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ABSTRACT

The rapid progress of wireless communication and embedded micro-sensing MEMS
technologies has made wireless sensor networks (WSNs) possible. Applications of WSNs have been
studied widely. Object tracking is one of the important issues of WSNs, which has applications in
such as military intrusion detection and habitat monitoring. The key steps involved in object tracking
include event detection, target classification, and location estimation. In a WSN, when the locations
of objects are successfully determined, a location management scheme for reporting objects'
locations and disseminating users' queries isrequired. The main theme of this dissertation is location
management. The proposed location management schemes explore the in-network data processing
capability of WSNs by executing distributed location updates and queries inside the network. We
further consider the multi-sink system, in which a user can issue queries from anywhere in a WSN.
Since inaccuracy of sensing data is inherent for WSNSs, we also consider the scenarios where users
can tolerate a certain degree of imprecision in their query results. The goal of location management
schemes is to reduce the communication cost. Besides, we observe that packet collision can lead to
incorrect location information. Thus, we also propose a link-layer protocol to relieve the collision
problem for event-driven WSNS.

Obiject tracking typically involves two basic operations: update and query. In general, updates
of an object's location are initiated when the object moves from one sensor to another. A query is
invoked each time when there is a need to find the location of an interested object. Location updates
and queries may be done in various ways. A naive way for delivering a query is to flood the whole
network. The sensor whose sensing range contains the queried object will reply to the query. Clearly,
this approach is inefficient because a considerable amount of energy will be consumed when the
network scale is large or when the query rate is high. Alternatively, if all location information is



stored at a specific sensor (e.g., the sink), no flooding is needed. But whenever a movement is
detected, update messages have to be sent. One drawback is that when objects move frequently,
abundant update messages will be generated. The cost is not justified when the query rate is low.
Clearly, these are tradeoffs. In this dissertation, we first propose a tree-based location management
scheme for single-sink WSNs. We develop several tree structures for in-network object tracking
which take the physical topology of the sensor network into consideration. The optimization process
has two stages. The first stage tries to reduce the location update cost based on a deviation-avoidance
principle and a highest-weight-first principle. The second stage further adjusts the tree obtained in
the first stage to reduce the query cost.

We then explore the possibility of having multiple sinks in the network. One advantage of
having multiple sinks is to reduce the response time of queries. In addition, using multiple sinks can
also relieve the traffic congestion problem associated with a single-sink system (i.e., using multiple
sinks can achieve load balance more easily). In order to support location management in a multi-sink
WSN, we can extend the tree structure used in the single-sink system by constructing a logical tree
for each sink. However, this implies that updating multiple trees is required when a movement event
is detected. It is desirable to further reduce the update cost when multiple trees coexist in the
network. In this dissertation, by exploring the'concept of data aggregation, we propose an algorithm
to efficiently update multiple trees. With proper design, we show that the update cost increases
slightly when the number of trees (i.e., the number of sinks) increases. Based on the foregoing
update algorithm, we formulate the update cost that'gives us hints to develop efficient
tree-construction algorithms. Two distributed multi-tree construction algorithms are also presented.

In moving object environments, maintaining the exact locations of objects anytime is almost
infeasible. Not only the positioning results are error-prone, but also the data transfer delay and object
mobility make the locations of objects inaccurate. Fortunately, imprecision is tolerable in many
object tracking applications. For example, when life scientists intend to track an animal, it may be
sufficient to know its moving direction rather than its exact location. In addition, the location
information recorded several hours ago, instead of at the current time, may be still available for the
life scientists to understand the animal's daily life. Therefore, we also we propose an in-network
location management scheme to support imprecision-tolerant queries for object tracking sensor
networks. We argue that an imprecision-tolerant location management solution should achieve two
desirable goals. First, the query cost should be proportional to the precision level. Second, multiple
precision levels should be provided. We observe that the tree-based location management schemes
could achieve these two goals inherently. Thus, we also propose a tree construction algorithm for
imprecision-tolerant location management model.

By simulation, we observe that packet collision can lead to incorrect location information in
object tracking sensor networks. Thus, we also propose a link-layer protocol to relieve the collision

iv



problem for event-driven WSNs. Wireless sensor networks (WSNSs) can generally be classified into
two categories: time-driven and event-driven. In an event-driven WSN, sensors report their readings
only when they detect events. In such behavior, sensors in the event area may suffer from higher
contention. In this dissertation, we solve this problem by jointly considering two subissues. One is
exploiting the spatial correlation of data reported by sensors in the event area and the other is
designing a specific MAC protocol. We propose a novel hybrid TDMA/CSMA protocol with the
following interesting features that differentiate itself from conventional TDMA-based protocols.
First, the TDMA part is based on very loose time synchronization and is triggered by the appearance
of events. On the other hand, the CSMA part is adopted in the non-event area to achieve low latency
transmission. Second, the slot assignment strategy associated with the TDMA part takes the spatial
correlation of sensor data into consideration and thus allows less strict slot allocation than
conventional TDMA schemes. Interestingly, by intentionally allowing one-hop neighbors to share
the same time slot, the number of slots required per frame is significantly reduced. Third, by
enlarging the slot size on purpose, our scheme enforces packets, after leaving the event area, to form
a pipeline in such a way that packets flow like streams, each of which is separated sufficiently in
distance to avoid interference. In addition, by exploiting TDMA's features and the spatial correlation
of sensor data, we show how to reduce redundant reports. We also discuss how to combine our
protocol with the LPL (Low Power Listening).technique tg.achieve energy efficiency.

Keywords: wireless sensor network, object tracking, in-network processing, data aggregation,
mobile computing, location management, imprecision-tolerant, MAC, TDMA, CSMA, spatial
correlation.
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Chapter 1

Introduction

The emerging wireless sensor network (WSN) technology may greatly facilitate
human life. A WSN may consist of many inexpensive wireless nodes, each ca-
pable of collecting, processing, and,storing environmental information, and com-
municating with other nodes: A lot of research efforts have been dedicated to
WSNSs, including deign of physical and medium access layers [26, 35] and rout-
ing and transport protocols[10, 13].-Applications of WSNs have been studied in
[2,6,17].

Object tracking is an important-application of WSNs (e.g., military intrusion
detection and habitat monitoring). The key steps involved in tracking include
event detection, target classification, and location estimation [3, 5, 15, 18]. In a
WSN, when the locations of objects are successfully determined, a location man-
agement scheme for reporting objects’ locations and disseminating users’ queries
is required [14, 16]. The main theme of this dissertation is location management.
In particular, we explore the in-network data processing capability of WSNs by
executing distributed location updates and queries inside the network. Updates of
an object’s location are initiated when the object moves from one sensor to an-
other. A query is invoked each time when there is a need to find the location of
an interested object. Location updates and queries may be done in various ways.
A naive way for delivering a query is to flood the whole network. The sensor

whose sensing range contains the queried object will reply to the query. Clearly,



this approach is inefficient and not scalable because a considerable amount of en-
ergy will be consumed when the network scale is large or when the query rate is
high. Alternatively, if all location information is stored at a specific sensor (e.g.,
the sink), no flooding is needed. But whenever a movement is detected, update
packets have to be sent to the sink. Thus, when objects move frequently, abundant
update packets will be generated. The cost is not justified when the query rate is
low. Clearly, these are tradeoffs.

1.1 Location Management for Single-Sink WSNs

In [14], aDrain-And-BalancéDAB) tree structure is proposed to address the issue

of location management. As far as we know, this is the first in-network object
tracking approach in sensor networks where query messages are not required to
be flooded and update messages are-not always transmitted to the sink. However,
[14] has two drawbacks. First, a DAB-tree is a logical tree not reflecting the
physical structure of the sensor network; hence, an edge may consist of multiple
communication hops and a‘high-communication cost may be incurred. Second,
the construction of the DAB tree/does not take the query cost into consideration.
Therefore, the result may not be efficient in some cases.

In this dissertation, we propose a tree-based location management scheme for
single-sink WSNs. We develop several tree structures for in-network object track-
ing which take the physical topology of the sensor network into consideration.
The optimization process has two stages. The first stage aims at reducing the up-
date cost, while the second stage aims at further reducing the query cost. For the
first stage, several principles, namely deviation-avoidance and highest-weight-first
ones, are pointed out to construct an object tracking tree to reduce the communi-
cation cost of location update. Two tree construction algorithms are proposed:
Deviation-Avoidance Tre¢DAT) and Zone-based Deviation-Avoidance Trge
DAT). The latter approach tries to divide the sensing area into square-like zones,
and recursively combine these zones into a tree. Our simulation results indicate



that the Z-DAT approach is very suitable for regularly deployed sensor networks.
For the second stage, we develo®aery Cost Reductio(QCR) algorithm to

adjust the object tracking tree obtained in the first stage to further reduce the to-
tal cost. The way we model this problem allows us to analytically formulate the
update and query costs of the solution based on several parameters of the given
problem, such as rates that objects cross the boundaries between sensors and rates
that sensors are queried. We have also conducted extensive simulations to evaluate
the proposed solutions. The results do validate our observations.

1.2 Location Management for Multi-Sink WSNs

We further explore the possibility of having multiple sinks in the network. One
advantage of having multiple sinks isito reduce the response time of queries. In
addition, using multiple sinks can also-relieve the traffic congestion problem as-
sociated with a single-sink system (i.e; using multiple sinks can achieve load
balance more easily). In order to support location management in a multi-sink
sensor network, we can extend the tree structure used in the single-sink system by
constructing a logical tree for each sink. However, this implies that updating mul-
tiple trees is required when a movement event is detected. Assuming that there
arem sinks coexisting in the network, if each tree is updated independently, the
update cost will become approximatetytimes. It is desirable to further reduce

the update cost when multiple trees coexist in the network. In this dissertation, by
exploring the concept of data aggregation, we propose an algorithm to efficiently
update multiple trees. With proper design, we show that the update cost increases
slightly when the number of trees (i.e., the number of sinks) increases. Based on
the foregoing update algorithm, we formulate the update cost that gives us hints
to develop efficient tree-construction algorithms. Two distributed multi-tree con-
struction algorithms are presented. Experimental results show that the increased
update cost with multiple trees can be compensated by lower query cost and the
query cost also depends om, the number of sinks. This allows us to further



investigate how to choose the valuerefunder different scenarios.

1.3 Imprecision-tolerant Location Management Model

Since inaccuracy, or even error, of sensing data is inherent for WSNs, applica-
tions of WSNs usually have to tolerate some degree of imprecision. This property
has been exploited in the design of network protocols for WSNs. For example,
precision-constrained data aggregation is considered in [28], and a storage sys-
tem that supports drill-down queries with different precision levels is proposed in
[11]. Similarly, in moving object environments, maintaining the exact locations
of objects anytime is almost infeasible. Not only the positioning results are error-
prone, but also the data transfer delay and object mobility make the locations of
objects inaccurate. Fortunately, imprecision is tolerable in many object tracking
applications. For example, when life-scientists intend to track an animal, it may be
sufficient to know its moving direction rather.than its exact location. In addition,
the location information recorded several hours'ago, instead of at the current time,
may be still available for the'life ‘seientists to understand the animal’s dalily life.

In this dissertation, we propose an in-network location management scheme
to support imprecision-tolerant queries for object tracking sensor networks. We
intend to develop a location management model that can achieve two goals. First,
multiple imprecision levels should be provided. Second, the query cost should be
proportional to the imprecision level. To achieve these two goals, we propose a
tree-based imprecision-tolerant location management model. To begin with, we
present the update and query mechanisms that can support imprecision-tolerant
queries. We then propose a tree construction algorithm to reduce the query cost
while minimize the increment of update cost.



1.4 A Link-layer Protocol for Event-driven WSNs

By simulation, we observe that packet loss may make the location information
incorrect in object tracking sensor networks. Thus, we also propose a link-layer
protocol to relieve the contention and collision problems for event-driven WSNSs.
We solve these problems by jointly considering two subissues. One is exploiting
the spatial correlation of data reported by sensors in the event area, and the other
is designing a specific MAC protocol. We propose a novel hybrid TDMA/CSMA
protocol with the following interesting features that differentiate itself from con-
ventional TDMA-based protocols. First, the TDMA part is based on very loose
time synchronization and is triggered by the appearance of events. On the other
hand, the CSMA part is adopted in the non-event area to achieve low latency
transmission. Second, the slot assignment strategy associated with the TDMA
part takes the spatial correlation of senser data into consideration and thus allows
less strict slot allocation than conventional TDMA schemes. Interestingly, by in-
tentionally allowing one-hop neighbors to share the same time slot, the number of
slots required per frame is significantly reduced. Third, by enlarging the slot size
on purpose, our scheme enforces packets, after leaving the event area, to form a
pipeline in such a way that packets flow like streams, each of which is separated
sufficiently in distance to avoid interference. In addition, by exploiting TDMA's
features and the spatial correlation of sensor data, we show how to reduce redun-
dant reports. We also discuss how to combine our protocol with the LPL (Low
Power Listening) technique to achieve energy efficiency.

1.5 Organization of This Dissertation

This dissertation is organized as follows. Related works are surveyed in Chap-
ter 2. In Chapter 3, we present the proposed location management scheme for
single-sink WSNSs. In Chapter 4, we further explore the possibility of having mul-

tiple sinks. Based on the tree-based location management schemes, we propose an



imprecision-tolerant location management model in Chapter 5. In Chapter 6, we
propose a link layer protocol to solve the packet loss problem that may make loca-
tion information incorrect. Finally, we conclude our research results and propose

some future directions in Chapter 7.



Chapter 2
Related Works

In this chapter, we first review some papers addressing the object tracking issues
in wireless sensor networks. Because the main theme of this dissertation is loca-
tion management. In Sec. 2.2, we discuss some existing location managements
schemes proposed for WSNs. As_we mentioned above, packet loss may make
location information incorrect. Packet'loss. is usually caused by contention and
collision. We propose a link layer pratocol to relieve the contention and collision
problems. Because MAC (Medium Access Control) protocols are usually used
to solve the contention and collisien. problems, we review some medium access
schemes developed for wireless sensor networks in Sec. 2.3.

2.1 Object Tracking Using Wireless Sensor Networks

A significant amount of research effort has been elaborated upon issues of object
tracking problems. The authors in [34] explored a localized prediction approach
for power efficient object tracking by putting unnecessary sensors in sleep mode.
Techniques for cooperative tracking by multiple sensors have been addressed in
[3, 7,18, 37]. In[7], adynamic clustering architecture that exploits signal strength
observed by sensors is proposed to identify the set of sensors to track an object.
In [37], a convoy treeis proposed for object tracking using data aggregation to

reduce energy consumption.



2.2 Location Management in Object Tracking Sen-
sor Networks

In [14], a Drain-And-Balance(DAB) tree structure is proposed to address the
location management issue. As far as we know, this is the first in-network object
tracking approach in sensor networks where query messages are not required to
be flooded and update messages are not always transmitted to the sink. However,
[14] has two drawbacks. First, a DAB tree is a logical tree not reflecting the
physical structure of the sensor network; hence, an edge may consist of multiple
communication hops and a high communication cost may be incurred. Second,
the construction of the DAB tree does not take the query cost into consideration.
Therefore, the result may not be efficient in some cases.

A location management scheme’supporting imprecision-tolerant queries for
object tracking sensor netwarks hasbeen studied in [33]. The location information
of an object is stored in a centric storage node:and a local storage node. When a
user intends to know the location of an object,-the query will be forwarded from
the querying node to the centric storage node of that object. If the precision level
is satisfactory, the centric storage node will reply to this query. Otherwise, the
query will be forwarded to the local storage node, which has more precise location
information of that object. This scheme has two major drawbacks. First, when the
querying node is very close to the local storage node of the queried object, the
query will still be forwarded to the centric storage node, which may be far from
the querying node. Second, only two precision levels are provided.

2.3 MAC Protocols for Wireless Sensor Networks

A significant amount of research effort has been dedicated to the design of MAC
protocols for WSNs [1, 20, 22, 24, 27, 29, 30, 35]. The energy efficiency issue has
been studied in S-MAC [35] and T-MAC [29] by synchronizing sensors on a com-

mon wakeup/sleep schedule. In order to eliminate the synchronization overhead,



B-MAC [20] adopts a preamble sampling technique. Some hybrid TDMA/CSMA
MAC protocols have been proposed recently. In Z-MAC [24], some sensors will
adopt a CSMA-based MAC protocol and those suffering from high contention will
adopt a TDMA-based MAC protocol. By doing so, Z-MAC enjoys the benefits of
low latency of CSMA and high channel utilization of TDMA. Funneling-MAC [1]
is also a hybrid TDMA/CSMA MAC protocol that aims to solve the funneling ef-
fect near the sink. However, these protocols do not address the spatial correlation
of sensor data, and thus the contention problem, in event-driven WSNSs.
Exploiting the spatial correlation of sensor data on the MAC layer has been
discussed in [31], where the relation between the spatial positions of sensors and
the event estimation reliability is investigated. Specifically, a distortion function
is derived and a termorrelation radius(R.,,) is introduced. Then, CC-MAC
(spatial Correlation-based Collaborative Medium Access Control) is proposed.
CC-MAC consists of two campenents: E-MAC. (Event MAC) and N-MAC (Net-
work MAC). E-MAC aims te filter out correlated-reporting (i.e., determine which
sensors can report). On the other -hand, N-MAC is mainly used for sensors not
in the event area to forward reporting packets. However, CC-MAC has the fol-
lowing drawbacks: (i) E-MAC is ‘a‘pure contention-based protocol. Although
some sensors may withdraw from reporting, those sensors that decide to report
will still cause a lot of contention, because they will report simultaneously. (ii)
The RTS/CTS mechanism is adopted, which causes high overheads when packet
sizes are small. (iii) In CC-MAC, when a sensooverhears a packet reported by
another sensay, = will judge whether the distance between itself grid smaller
than R.,,... If so, x will suspend its report. As to be shown later, this simple
condition cannot completely avoid redundant reporting. (iv) The report reduction
technique proposed in CC-MAC highly depends on overhearing; thus, redundancy

may still exist when when one misses overhearing.



Chapter 3

In-network Location Management
for the Single-sink System

In this chapter, we present our proposed location management scheme designed
for the single-sink sensor networks. We propose a tree structure for in-network
object tracking in a sensor network: The location update part of our solution can be
viewed as an extension of f14]. In particular, we take the physical topology of the
sensor network into consideration. We take a two-stage approach. The first stage
aims at reducing the update‘cost, while the second stage aims at further reducing
the query cost. For the first stage, several principles, namely deviation-avoidance
and highest-weight-first ones, are pointed out to construct an object tracking tree
to reduce the communication cost of location update. Two solutions are proposed:
Deviation-Avoidance Tre@DAT) and Zone-based Deviation-Avoidance Tige

DAT). The latter approach tries to divide the sensing area into square-like zones,
and recursively combine these zones into a tree. Our simulation results indicate
that the Z-DAT approach is very suitable for regularly deployed sensor networks.
For the second stage, we develo®uaery Cost Reductio(QCR) algorithm to

adjust the object tracking tree obtained in the first stage to further reduce the total
cost. The way we model this problem allows us to analytically formulate the
update and query costs of the solution based on several parameters of the given
problem, such as rates that objects cross the boundaries between sensors and rates
that sensors are queried. We have also conducted extensive simulations to evaluate
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(b)

Figure 3.1: (a) The Voronoi graph of a sensor network. (b) The géaglorre-

sponding to the sensor network in (a).

the proposed solutions. The results do validate our observations.

3.1 Preliminaries

We consider a wireless sensor network deployed in a field for the purpose of object
tracking. Sensors’ locations are already known at a special node, catled
which serves as the gateway of the sensor network to the outside world. We adopt
a simplenearest-sensomodel, which only requires the sensor that receives the
strongest signal from the object to report to the sink (this can be achieved by [7]).
Therefore, the sensing field can be partitioned into a Voronoi graph [4], as depicted
in Fig. 3.1(a), such that every point in a polygon is closer to its corresponding
sensor in that polygon than to any other. In practice, a sensor under our model may
represent the clusterhead of a cluster of reduced-function sensors. In this work,
however, we are only interested in the reporting behavior of these clusterheads.
Our goal is to propose a data aggregation model for object tracking. We as-
sume that whenever an object arrives at or departs from the sensing range (poly-

gon) of a sensor, detection evenwill be reported (note that this update message
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are not always forwarded to the sink, as will be elaborated later). Two sensors are
calledneighborsf their sensing ranges share a common boundary on the Voronoi
graph; otherwise, they aren-neighbors Multiple objects may be tracked con-
currently in the network, and we assume that from mobility statistics, it is possi-
ble to collect the event rate between each pair of neighboring sensors to represent
the frequency of objects travelling from one sensor to another. For example, in
Fig. 3.1(a), the arrival and departure rates between sensors are shown on the edges
of the Vonoroi graph. Note that before the statistics is done, the initial weights can
be the same value for all edges. In addition, the communication range of sensors is
assumed to be large enough so that neighboring sensors (in terms of their sensing
ranges) can communicate with each other directly. Thus, the network topology
can be regarded as an undirected weighted graph (Vg, Eg) with Vi rep-
resenting sensors arfd; representing links. between neighboring sensors. The
weight of each link(a,b) € E¢, denoted byweg(a, b), is the sum of event rates
from a to b andb to a. This=is because both arrival and departure events will be
reported in our scheme. Infactis-a Delaunay triangulation of the network [4].
Fig. 3.1(b) shows the corresponding Delaunay triangulation of the sensor network
in Fig. 3.1(a). Note that the number‘labelled on each edge represents its weight.
In light of the storage in sensors, the sensor network is able to be viewed as
a distributed database. We will exploit the possibility of conducting in-network
data aggregation for object tracking in a sensor network. Similar to the approach
in [14], a logical weighted tre& will be constructed fronG. Note thatl” may
not be a spanning tree in which each node’s parent is its neighbor. For example,
Fig. 3.2(a) shows an object tracking tréeconstructed from the networ in
Fig. 3.1(b), where the dotted lines are the forwarding path of a query for Carl.
Movement events of objects are reported based on the following rules. Each node
a in T will maintain adetected lisDL, = (Lg, L1, . .., Lx) such that’, is the set
of objects currently inside the coverage of sensdaself, andL;,: = 1,--- | k,
is the set of objects currently inside the coverage of any sensor who is in the
subtree rooted at thieth child of sensor, wherek is the number of children af.
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A is the sink. A is the sink.
DL (NIL, {Car2}, NIL, NIL) DL (NIL, NIL, NIL, {Car2})
B DL_(NIL) DL, ({Car3}, NIL, B ) DL ({Car2})
c {Carl}, NIL, {Car2}) N2 0H)
A et

DL, ({Car3}, {Carl},
"1(B,C) < C

NIL,NIL, {Car2})
A

9 b (i,
il (Carl}) af
8i DL(NIL) Car2 <
of G DL, ({Car2}) &
i H A
H Z DL, (NIL)
DLNIL (Carl)) Ny jcart)) =i/ DL(NIL, NIL)
- W00) < N Carl DL (NIL. NIL)
N w,(JK) =1 'Z,"'""'----~--...._,___ K DL, (NIL)
K ep(Carl, K, G) I d"--(-(-:- ......... X
ep(Carl, K, G)

[ — -
Query(Carl) ~ DL,({Carl})

(b)

(a)

Figure 3.2: (a) An object tracking tr&eé (b) The events generated as Carl moves

from sensork to G and Car2 moves fromi/ to C.

When an object moves from the sensing rangeofo that ofb ((a,b) € Eg), a
departure eventep(o, a, b) and an-arrival eventru(o, b, a) will be reported by
andb, respectively, alone the tréde Onfeceiving.such an event, a sensdakes

the following actions:
e If the eventisdep(o, a,b), = Will'remove o from the propet’; in DL, such

that sensor belongs to the-th subtree ofc in 7. If x = a, o will be
removed fromL, in DL,. Thenz checks whether sensémelongs to the

subtree rooted at in 7" or not. If not, the everdep(o, a, b) is forwarded to

the parent node af in 7.
e If the event isarv(o, b, a), x will add o to the properL; in DL, such that

sensot belongs to the-th subtree ofc in 7. If x = b, o will be added to
Lo in DL,. Thenx checks whether sensatbelongs to the subtree rooted at

x in T or not. If not, the evenirv(o, b, a) is forwarded to the parent node

ofxinT.
The above data aggregation model guarantees that, disregarding transmission

delays, the data structubB.; always maintains the objects under the coverage of
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Table 3.1: Summary of notations used in Chapter 3.
distg(u,v) | The minimum hop count betweenandv in G.
distr(u,v) | The sum ofwrs of edges on the path connectimgndv in 7.

we(u, v) The event rate betweenandv.
wr(u,v) The weight of edgé¢u, v) in T'. (= distg(u,v)).
lea(u, v) The lowest common ancestorofndwv.
p(v) The parentob in T'.
Subtree(v) | Members of the subtree rootedat
root(v) The root of the temporary subtree containinduring
the construction of .
q(v) The query rate of.

neighbors(v) | Neighbors ofv.
children(v) | Children ofv.

any descendant of sensoim 7'. Therefore, searching the location of an object
can be done efficiently ifi"; a query'is only.required to be forwarded to a proper
subtree and no flooding is needed: For example, Fig. 3.2(a) shows the forwarding
path of a query for Carl ifd’; Fig. 3.2(b) shows the reporting events as Carl and
Car2 move and the forwarding path-of-a.query-for the new location of Carl.

Our goal is to constructan object tracking trée= (V, Er) that incurs
the lowest communication cost given'a sensor netwerk= (i, E) and the
corresponding event rates and query rates, where= V; and Er consists of
|Vr| — 1 edges with the sink as the root. Intuitively,is a logical tree constructed
from G, in which each edgéu,v) € T is one of the shortest paths connecting
sensors; andv in G. Therefore, the weight of each edge v) in 7', denoted by
wr(u,v), is modelled by the minimum hop count betweeandv in G. The cost
function can be formulated as(7") = U(T') + Q(T), whereU(T') denotes the
update cost an@(T') is the query cost.

Table 4.1 summaries the notations used in this chapter.
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3.2 Tree Construction Algorithms

This section presents our algorithms to construct efficient object tracking trees.
In Section 3.2.1, we develop algorithm DAT targeted at reducing the update cost.
Then, in Section 3.2.2, based on the concept of divide-and-conquer, we devise
algorithm Z-DAT to further reduce the update cost. In Section 3.2.3, algorithm
QCR is developed to adjust the tree obtained by algorithm DAT/Z-DAT to further
reduce the total cost.

3.2.1 Algorithm DAT (Deviation-Avoidance Tree)

Object tracking typically involves two basic operations: update and query. Based
on the aggregation model in Section 3.1, updates will be initiated when an object
o moves from sensat to sensob it can’be seen that both the departure event
dep(o, a, b) and the arrival eventrv(a;b;a)will'be forwarded to the root of the
minimum subtree containing bothandb.-Therefore, the update cosSt{7") of a

treeT’ can be formulated by-countingthe average number of messages transmitted
in the network per unit time:

U(T) = Z we(u,v) x (distr(u, lca(u,v)) + distp(v, lca(u,v))), (3.1)
(u,v)EEG

wherelca(u, v) denotes the root of the minimum subtredithat includes both
andv (from now on, we will calllca(u, v) the lowest common ancestor ofand
v), anddistr(z,y) is the sum of weights of the edges on the path conneating
andy in T. For example in Fig. 3.2(@)listy(F, K) = wr(F,I) + wr(I,J) +
wr(J, K) = 3. In order to identify which factors affecting the valuelofT"), we
show that/(T") also can be formulated in a different way as follows.

Theorem 1. Given any logical tre€’ of the sensor networ, we have

UT) = Y | wrlp(v),v) x > we(z,y) |, (3.2)

(p(v)v'U)GET (z,y)EEgAzE€Subtree(v)
Ay&Subtree(v)
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whereSubtree(v) is the subtree of' rooted at node andp(v) is the parent of.

Proof. This can be proved by observing which events will be reported along an
edge inT. Given (p(v),v) € Er, forany(z,y) € Eg wherex € Subtree(v)
andy ¢ Subtree(v), since the lowest common ancestorzo0find y must not

in Subtree(v), any event generated dm, y) will be transmitted fronv to p(v).
Otherwise, no message will be transmitted froro p(v). This leads to the theo-
rem. [

From Eg. 3.1 and Eq. 3.2, we make three observations dbatiy:

e EQ. 3.1 contains the factdisty(u, lca(u, v)). Its minimal value is
distc(u, lca(u,v)), which denetesithe minimum hop count between sensor
u and sensolca(u, v) in G. Therefore, we would expect théist (u, sink)
= distg(u, sink) for eachu € Vg; otherwise, we say that deviates from
its shortest path to the sink. dfisty(u, sink) = distg(u, sink) for each
u € Vg, we say that tre@"is-adeviation-avoidancéree. Fig. 3.3 shows
four possible object tracking trees for the graghn Fig. 3.1(b). The one
in Fig. 3.3(b) is not a deviation-avoidance tree sidcer(E, A) = 3 >
disto(E, A) = 2. The other three are deviation-avoidance trees.

e Eg. 3.2 contains the factar;(u, v). Its minimal value is 1 whem # v.
Consequently, it is desirable that each sensor’s parent is one of its neigh-
bors. Only the tree in Fig. 3.3(d) satisfies this criterion. By selecting
neighboring sensors as parents, the average valdéesaf(u, lca(u, v)) +
distr(v,lca(u,v)) in EQ. 3.1 can be minimized. For example, the aver-
age values oflistr(u, lca(u,v)) + distr(v, lca(u,v)) are 3.591, 2.864, and
2.227 for the trees in Fig. 3.3(a), 3.3(c), and 3.3(d), respectively.

e In Eq. 3.1, the weightv (u, v) will be multiplied by distr(u, lca(u,v)) +
distr(v,lca(u,v)). Fortwo edgesu, v) and(v',v') € Eg such thatvg(u, v)

16



A is the sink. A is the sink.

(©) (d)

Figure 3.3: Four possible‘location tracking trees for the graph in Fig. 3.1(b).

> we (v, '), itis desirable thadisty (u, lca(u,v)) + distr(v, lea(u,v)) <
distr (v, lca(u',v")) + distp (v, lca(v’,v")). Combining this observation
with the second observation, an edgev) with a higherwg(u, v) should
be included into7" as early as possible angv) should be set tos if
dista(u, sink) < distg(v, sink), and vice versa. We call this theghest-
weight-firstprinciple.

Based on above observations, we develop our algorithm DAT. Initially, DAT
treats each node as a singleton subtree. Then we will gradually include more
links to connect these subtrees together. In the end, all subtrees will be connected
into one tre€l’. The detailed algorithm is shown in Algorithm 1, where notation
root(z) represents the root of the temporary subtree that containEo begin
with, E is sorted into a listL in a decreasing order of links’ weights. Based
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on the third observation, algorithm DAT will examine edged.ione by one for
possibly being included into tréE. For each edgéu, v) in L being examined by
algorithm DAT, (u, v) will be included intol” only if « andv are currently located

in different subtrees. Alsdu, v) will be included intoT" only if at least one of;

andv is currently the root of its temporary subtree and the other is on a shortest
path inG from the former node to the sink (these conditions are reflected by the
if statements in lines 5 and 7). An edge(inpassing these checks will then be
included intoT". Note that without these conditions, deviations may occur. It can
be seen thal’ is always a subgraph @ andwr(u,v) = 1 for all (u,v) € Er.

For example, Fig. 3.4(a) is a snapshot of an execution of DAT. The solid lines are
those edges that have been included iitdWhen(F, G) is examined by DAT, it

will not be included intdl’, because neither nor G is the root of its temporary
subtree. Another snapshot is shown in'Fig. 3.4(b). WtienD) is examined, it

will not be included intdl". Although P is the root of its temporary subtreB, is

not on the shortest path froMto A, i.e.,distq(D,A) # distq(B, A)+1. (A, D)

will be then examined afteiB, D). (A, D).can be included int@", because) is

the root of its temporary subtree ardds on the'shortest path from to A.

Algorithm 1 DAT(G)
1: LetT = (Vp, Er) such that/y = Vg andEr = ¢
2. Sort Eg into a list L in a decreasing order of their event rates.
3: for each(u,v) € E¢ in L do

4. if (root(u) # root(v)) then

5: if (u=root(u)) A (distg(u, sink) = distg(v, sink) + 1) then

6: Let Er = Er U (u,v) and let the root of the new subtree het(v).
7: else if(v = root(v)) A (distg(v, sink) = diste(u, sink) + 1) then

8: Let 7 = Er U (u,v) and let the root of the new subtree het (u).
o: end if

10:  endif

11: end for

Theorem 2. If GG is connected, the tre@& constructed by algorithm DAT is a

connected deviation-avoidance tree rooted at the sink.
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Figure 3.4: Snapshots of an execution of DAT.

Proof. First, we show thaf’ is connected.;Each sensor is the root of a singleton
subtree in the beginning and we willprove that only one senor will be the root
in the ending. Sincé&y is connected, when.a sensor# sink is the root of

a subtree (i.e.x = root(z)), it always can find a neighboring senspisuch
thatdistq(x, sink) = distq(ys sink) + 1.1t is €lear thatroot(y) # x, because
dista(root(y), sink) < dists(y, sink)."Hence, edgéz, y) can be included into

T, andz will not be the root anymore. By repeating such argumefitsjust be
connected and rooted at the sink. Second, we showtisad deviation-avoidance
tree. This can be derived from two observations. First, when an edge is
included into7", DAT will choosewv as the child ofu if distg(v, sink) is larger
thandistq(u, sink), and vice versa. Therefore, if the path from the sink to sensor
u is one of the shortest paths, the path from the sink to sensoalso one of the
shortest paths. Second, assumiing ; (v, sink) = distg(u, sink) + 1, DAT will
include (v, u) only whenv itself is the root of a subtree. This guarantees that alll
descendant nodes ubtree(v) will not deviate from their shortest paths to the

sink. Hence, the theorem follows. O]
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3.2.2 Algorithm Z-DAT (Zone-based Deviation-Avoidance Tree)

The Z-DAT is derived based on the following locality concept. Assume dhat

is v's parent in7T. According to Eqg. 3.2, for any edge,y) € E¢ such that

x € Subtree(v) andy ¢ Subtree(v), arrival/departure events betweerandy

will cause a message to be transmitted(pfv), v), thus increasing the value of

2 (e.9)e B nweSubtree(v) nyg Subtrec(v) WG (2, y). Therefore, the perimeter that bounds

the sensing area of sensors in e&elitree(v) will impact the update cost (7).

A longer perimeter would imply more events crossing the boundary. For example,
in the three subtrees in Fig. 3.5, although all subtrees have the same number of
sensors, the perimeter of the subtree in Fig. 3.5(a) is smaller than that in 3.5(b),
which isin turn less than that in 3.5(c). In geometry, it is clear that a circle has the
shortest perimeter to cover the same area as compared with other shapes. Circle-
like shapes, however, are difficult to be used.in an iterative tree construction. As a
result, Z-DAT will be developed based-on square-like zones.

(a) (b) (c)

.
o 00— i

O OOV

dPW) P g p<v>©

Figure 3.5: Possible structures of subtrees with nine sensors.

Z-DAT is derived based on the deviation-avoidance principle and the above
locality concept. The algorithm buildg in an iterative manner based on two
parametersy andd, wherea is a power of2 and is a positive integer. To begin
with, Z-DAT first uses(« — 1) horizontal lines to divide the sensing field into
strips. For each horizontal line between two strips, we are allowed to further move
it up and down within a distance no more thaanits. This give4 + 1 possible
locations of each horizontal line. For each location of the horizontal line, we can
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calculate the total event rate that objects may move across the line. Then we pick
the line with the lowest total event rate as its final location. After all horizontal
lines are determined, we then further partition the sensing fielchihtegions by
using(« — 1) vertical lines. Following the adjustment as above, each vertical line
is also allowed to move left and right within a distance no more thanits and
the one with the lowest total event rate is selected as its final location.

After the above steps are completed, the sensing field is dividedirsquare-
like zones. First, we run DAT on the sensors in each zone. This will result in one
or multiple subtrees in each zone. Next, we will merge subtrees in the al3ove
zones recursively as follows. First, we combine these zones togethef intf
larger zones, such that each larger zone containg neighboring zones. Then
we merge subtrees in the3ex 2 zones by sorting all inter-zone edges (i.e., edges
connecting thesgx 2 zones) according to their event rates into allisind feeding
L to steps3 ~ 11 of the original DAT algorithm.:Second, we further combine the
above larger zones together‘infox ¢ even larger zones, such that each even
larger zone containdx 2 neighboringlarger zones. This process is repeated until
one single tree is obtained."“The algorithm.is summarized in Algorithm 2. An
illustrated example is shown in Fig."3.6." In the first iteration, we divide the field
into a x « zones and adjust their boundaries accordinpas shown in Fig. 3.6(a).
In the second iteration, eachx 2 neighboring zones is combined into a larger

zone as shown in Fig. 3.6(b).

Algorithm 2 Z-DAT(G, «, 9)
1: Divide the network intax x o« zones based on parametarands.
2: Run DAT on the sensors in each zone.
311
4: while 5 # 0 do
5:  The network is divided intg; x g zones.
6: Run DAT on each zone to merge its subtrees.
.
8

1—1+1
: end while

To summarize, Z-DAT is similar to DAT except that it examines linkstf
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Figure 3.6: An example of the Z-DAT algorithm with= 4.

in a different order. By partitioning the sensing field into zones, each subtree in
T is likely to cover a square-like region, thus avoiding the problem pointed out
in Fig. 3.5. Also, by using-the [paramet&no fine-tune the lowest-level zones,
Z-DAT tends to avoid high-weight links becoming inter-zone edges. In fact, this
is a consequence of the the highest-weight-first design principle.

Theorem 3. If G is connected, the tre& constructed by algorithm Z-DAT is a
connected deviation-avoidance tree rooted at the sink.

Proof. Z-DAT will examine all links of G, but in a different order from DAT.
However, the proof of Theorem 5 is independent of the order of the links being
examined for being included intB. Therefore, the same proof is still applicable
here. O

3.2.3 Algorithm QCR (Query Cost Reduction)

The above DAT and Z-DAT only try to reduce the update cost. The query cost is
not taken into account. QCR is designed to reduce the total update and query cost
by adjusting the object tracking tree obtained by DAT/Z-DAT. To begin with, we
define the query ratg(v) of each sensor as the average number of queries that
refer to objects within the sensing rangevgfer unit time in statistics.
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Given atre€l’, we first derive its query cos}(7"). Suppose that an objectis
within the sensing range of Whenz is queried, ifv is a non-leaf node, the query
message is required to be forwarded tsincep(v) only indicates that is in the
subtree rooted at. On the other hand, if is a leaf node, the query message only
has to be forwarded ta(v), because senspfv) knows that the object is currently
monitored byv. The following equation give§)(T") by taking into account the
number of hops that query requests and query replies have to tra¥el on

Q(T) =2 x Z q(v) x distr(v, sink) + Z q(v) x distr(p(v), sink) | (3.3)

veEVPA vEVPA
v¢leaf node vEleaf node

We make two observations ap(T"). First, becauséistr(p(v), sink) is al-
ways smaller thawistr (v, sink), EQ.,3.3 indicates that placing a node as a leaf
can save the query cost instead of placing it as a non-leaf. For example, when
guery rates are extremely high, it is:desirable that every node will become a leaf
node andl’ will become a star-like graph. Second, the second term in Eq. 3.3
implies that the value ofistz(p(v),sink) 'should be made as small as possible.
Thus, we should choose a node closer.to'the sinksgsarent (however, this is at
the expense of the update cost).

Based on the above observations, QCR tries to adjust thdtrdgained by
DAT or Z-DAT. In QCR, we examind' in a bottom-up manner and try to adjust
the location of each node ifi by the following operations.

1. If a nodew is not a leaf node, we can make it a leaf by cutting the links to
its children and connecting each of its childrerpto). (Note that we can
do so becaus# is regarded as a logical tree.) LEt be the new tree after
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modification. We derive that

C(T) - C(T") =Q(T) — QT + U(T) - U(T") =

2x [qw+ 3 q)

i€children(v)A
i€leaf node

— Z U)G(U,’i) — Z Z wg(x,y)

i€neighbors(v) iGchild’ren(v) (z,y)eEgAygSubtree(i)
ANi€Subtree(v) Az E€Subtree(i)

- > wa(z,y). (3.4)

(z,y)EEgAygSubtree(v)
Az€Subtree(v)Az#v

If the amount of reduction is positive, we repldafeby 7’. Otherwise, we
keepT unchanged. Fig. 3.7 illustrates this operation.

Figure 3.7: Making a non-leaf nodea leaf node.

2. Ifanodev is a leaf node, we can makév) closer to the sink by cutting's
link to its current parenp(v) and connect to its grandparent(p(v)). Let
T' be the new tree. We derive that

C(T) = C(T") = Q(T) = Q(T") + U(T) —

(z,y)EEGAy¢ESubtree(v)A
z€Subtree(v)Ay€Subtree(p(v))

U(T) =
2x (q(v) +q(v)— | 2x Z wg(x,y)) ., (3.5)
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, 0 if has more than one child ifA
q(v) = { o) :

q(p(v)) otherwise

If the amount of reduction is positive, we repld€eby 7'. Otherwise, T’
remains unchanged. Fig. 3.8 illustrates this operation.

Figure 3.8: Connecting a&leaf nodgto p(p(v;)).

Note that Eq. 3.4 and Eg. 3.5 allow us to compute the reduction of cost without
computingU (7") andQ(7").~This,saves.computational overhead. Also note that
T is examined in a bottom-up manner in alayer-by-layer manner. Nodes that are
moved to an upper layer will have a'chance to be reexamined. However, to avoid
going back and forth, nodes that are not moved will not be reexamined.

For example, suppose that we are given a DAT tree in Fig. 3.9(a) (which is
constructed from Fig. 3.1(b)), where the number labelled on each node is its query
rate. When examining the bottom layer, we will apply step 2 to sen3ots and
K and obtain reductions df974, —62, and—6, respectively. Hence, onl¥ is
moved upward as shown in Fig. 3.9(b). When examining the second layer, we
will apply step 1 to sensak and/ and apply step 2 to sensars £, andH. Only
when applying to sensai, it will result in a positive reduction 0t970. This
updates the tree to Fig. 3.9(c). Finally, sensBrd), andF' are examined. Only
D has a positive reduction @B42. Thus,D will become a leaf and all its children
are connected t®’s parent as shown in Fig. 3.9(d). Overall, the cost is reduced
from 7124 to 5150, 3180, and then 1338 after each step respectively.

25



A is the sink. A is the sink.
A3 2¢

5B

(@) (®)

Ais the sink.

(©) @

Figure 3.9: An execution example of algorithm QCR.
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Finally, we show how to derive Eq. 3.4 and Eq. 3.5. To begin with, we present
two implicit facts used in the following derivations. First, according to Theorem 1,
we can conclude that if the membersSibtree(v) are not changed, the number
of messages transmitted on edgep(v)) € T will be unchanged. Second, when
anodev is being examined by QCRyr(p(v), p(p(v))) must be 1. This fact holds
because the input of QCR algorithm is a DAT/Z-DAT tree and the tree is examined
in a bottom-up manner.

First, we derive th&)(T") — Q(7") in Eq. 3.4. When becomes a leaf and the
queried object locates at the sensing fieldpthe query only has to be sent to
p(v). In addition, when one of’s children, sayi, is connected tg(v) andi is a
leaf, p(v) also can reply the query if the queried object locates at the sensing field
of i. Thus, we have

Q(T) — Q(T'¥= 2xbalol s =) ali)
icchaldren(v)
Nv€lea fnode

Now we derive the/ (T") = U (") in-EQ. 3.4.  The operation of QCR ensures
that when one of’s children, sayi; changes its parent to(v), the update cost
will be increased by

Z Z wg(x,y)

iE€children(v) (z,y)EEgAyESubtree(s)
xzAESubtree(i)

In addition, the events betweermnd:, wherei € neighbors(v) andi € Subtree(v),
will be reported tg(v) rather than whenv becomes a leaf. Thusmust forward
an additional message tdv). The increased cost is

Z wg(v,1).

i€neighbors(v)A
i€Subtree(v)

However, whery becomes a leaf, the event across an €dgg) € E¢ such that
y & Subtree(v), x € Subtree(v), andx # v will not be transmitted orv, p(v)).
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The cost is reduced by

Z wa(z,y).

(z,y)EEGAy¢ESubtree(v)
Az€Subtree(v)Az#v

Combining above three factors, we have

/ .
U(T) _U(T) == § wG(va)_ § E wG’(xvy)
i€neighbors(v) iE€children(v) (z,y)EEGgAy¢Subtree(i)
ANi€Subtree(v) Az € Subtree(i)

+ Z wa(z,y).

(z,y)EEGAYy¢ESubtree(v)
Az€Subtree(v)Az#v

Next, we derive Eq. 3.5. To se(T") — Q(1"), observe that when changes
its parent fromp(v) to p(p(v)), the saved query cost igv). Furthermore, when
p(v) has only one child, the adjustment of will make p(v) a leaf. This saves a
query cost of;(p(v)). Therefare, we have

Q(T) =Q(F)y=2>x+q(v) + ¢ (v)).

The value ofU(T') — U(T") is affected by three factors, whenchanges its
parent fromp(v) to p(p(v)). The update cost will be increased by

Z wea(x,y).

(z,y)EEgAy¢Subtree(v)
Az Subtree(v)

For edges that have one incident verteXSimbtree(v) and one incident vertex is
in Subtree(p(v)) but not inSubtree(v), the events across these edges cannot be
absorbed by(v) afterv changes its parent from(v) to p(p(v)). The increased

Z wa(z,y).

(z,y)EEgAygSubtree(v)A
zE€Subtree(v)AyESubtree(p(v)

update cost will be:

However, for edges that have one incident verteXitree(v) and one incident
vertex is not inSubtree(p(v)), the events across these edges will be transmitted
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on (v, p(p(v))) rather than(v, p(v)) when we connects to p(p(v)). The update
cost will be decreased by

Z we(z,y).

(z,y)€ EgAzESubtree(v)
Ay¢ Subtree(p(v))

Combing these terms leads to the following equation

/!
(z,y)EEgAy¢Subtree(v) (z,y)EEGAyESubtree(v)A
Az€Subtree(v) z€Subtree(v)Ay€Subtree(p(v))
+ § UJG(%?/) =—12x § wG(xvy)
(z,y)EEgAz€Subtree(v) (z,y)EEGAyESubtree(v)A
ANy¢ Subtree(p(v)) z€Subtree(v)AyeSubtree(p(v))

3.3 Simulation Results

We have simulated a sensing field of s256 x 256.. Unless otherwise state¢)96
sensors are deployed in the sensingfield. Two deployment models are considered.
In the first one, sensors areegularly deployed & a 64 grid-like network. In
the second model, sensors are‘randomly deployed. In both models, the sink may
be located near the center of the network or one corner of the network.

Event rates are generated based on a model similar tttheobility model
in [14]. Assuming the sensing field as a square of sizer, the model divides
the field into2 x 2 sub-squares callddvel-1subregions. Each level-1 subregion
is further divided int® x 2 sub-squares callddvel-2subregions. This process is
repeated recursively. Given an object located in any position in the sensing field,
it has a probabilityp; to leave its current level-1 subregion, and a probability
1 — p; to stay. In the former case, the object will move either horizontally or
vertically with a distance of /2. In the latter case, the object has a probability
P to leave its current level-2 subregion, and a probability p, to stay. Again,
in the former case, the object will move either horizontally or vertically with a
distance of-/2%, and in the latter case it may cross level-3 subregions. The process
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repeats recursively. The probabiljtyis determined by an exponential probability

pi = e 92" whereC is a positive constant antlis the total number of levels.

In fact, the above behavior only formulates how objects move in the sensing field.
After sensors are deployed in the network (no matter the sensors are deployed in
a regular or random way), the movement patterns of these objects will generate
event rates between neighboring sensors. Also, objects are queried by the sink
with the same probability. Since objects may be located at different sensors with
different probabilities, the query rates may vary in different sensors.

We compare our schemes with a naive scheme and the DAB scheme [14].
In the naive scheme, any update is sent to the sink (i.e., there is no in-network
processing capability.) In this case, the query cost is always zero, so it is preferable
when the query rates are relatively high. For the DAB scheme, all sensors are
considered leaf nodes, and a legical structure is used to connect these leaf nodes.
When two subtrees are merged into one;.the.root of the subtree which is closer
to the sink will become the-root of the merged tree (note that this may still cause
deviation).

First, we observe the advantage of using-in-network processing to reduce up-
date cost. Fig. 3.10 shows the result 'under different valu€s fafr regular and
random sensor deployment. Note tiiat o) is set to(8,0) for the Z-DAT. As
can be seen, a largéf implies a higher moving locality, thus leading to a lower
update cost. The naive scheme has the highest update cost, which is reasonable.
By exploiting the concept of deviation avoidance and taking the physical topology
into account, DAT and Z-DAT further outperform DAB.

Next, we investigate the effect of deployment models. By comparing, the
graphs in Fig. 3.10, we see that Z-DAT outperforms DAT under regular deploy-
ment, but the advantage is almost negligible under random deployment. This is
because maintaining the shapes of subtrees in Z-DAT is difficult. For example,
Fig. 3.11 shows snapshots of DAT trees and Z-DAT trees under regular and ran-
dom deployments. Note that in this experiment, we assume that there are only
1024 sensors with the sink at the lower-left corner &ndo) is set to(8, 0) for the

30



8.00E+03 4.00E+03
—O— naive —o— naive
700E+03 | DAB 3.50E+03 [ o DAB
6.00E+03 | —A-DAT 3.00E+03 | - DAT
%~ Z-DAT %= ZDAT
-~ S5.00E+03 [ .~ 2.50E+03 [
g 8
8 8
2 4.00E+03 | 2 2.00E+03 |
= =
(=% o
= 3.00E+03 | S 150E+03 -
2.00E+03 | 1.00E+03
1.00E+03 %}m 5.00B+02 [
0.00E+00 L L 0.00E+00 L L =
C=0.1 C=05 C=10 C=15 C=20 C=0.1 C=05 C=10 C=15 C=20
(a) regular deployment, sink at a corner (b) regular deployment, sink at the center
6.00E+03 3.00E+03
—O— naive —o— naive
5.00E+03 —=-DAB 2.50E+03 | —=—-DAB
—A—DAT —A—DAT
4.00E+03 |- —X—ZDAT 2.00B+03 [ —%—Z-DAT
H z
=] =3
© o
£ 3.00E+03 [ £ 1.50E+03
b=} =3
2 2
=] =]
2.00E+03 1.00E+03 [
1.00E+03 | 5.00E+02 |
0.00E+00 L L 0.00E+00
C=0.1 C=05 C=10 C=15 C=20 C=0.1 C=05 C=10 C=15 C=20
(c) random deployment, sink at a corner (d) random deployment, sink at the center

Figure 3:10: Comparison of tipdate costs.

Z-DAT. As can be seen, Z-DAT does exploit'the locality of sensors by partitioning
sensors into zones under regular deployment. However, this is not true for the
random case.

To get further insight into the performance of Z-DAT, we varyandd, and
show the results in Fig. 3.12, where a 4096- and a 2500-node sensor networks
are simulated and sinks are located at the center of the network. Note that when
a = 1 andé = 0, Z-DAT is equivalent to DAT. For regular deployment, Z-DAT
performs well wheny is larger than 4. However, for random deployment, the
Z-DAT does not perform well, because maintaining the shapes of subtrees in Z-
DAT is difficult. Furthermore, it can be seen that whies- 0, Z-DAT has better
performance. This means that a square-like zone is better than a rectangle-like
zone. Also, note that the trend in both 4096- and 2500-node sensors networks (the
latter has a non-power-of-2 number of nodes) are quite similar.
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Figure 3.12: Comparison of update costs under diffefent) for Z-DAT.

Next, we examine the query cost.| The result is shown in Fig. 3.13. In general,
the query cost increases linearly with the aggregate query rate. As mentioned
earlier, the query cost of the naive 'scheéme is always zero. Both query costs for
DAT and Z-DAT are lower than that of DAB. This is attributed to the fact that
guery messages are always transmitted along the shortest paths between the sink
and sensors in DAT and Z-DAT. Also due to the similar reason, the query cost is
independent of the shape &f thus, DAT and Z-DAT perform similarly despite
the deployment models.

Finally, we examine the effectiveness of algorithm QCR by showing the total
update and query costs of different schemes in Fig. 3.14. (For visual clarity, the
cost of DAT are not shown.) The naive scheme has a constant cost because it is
not affected by the query rate. The costs of DAB and Z-DAT increase linearly
with respect to the query rate. As a result, they are outperformed by the naive
scheme after the query rate reaches a certain level. Our Z-DAT with QCR scheme
performs the best at all query rates. When the query rate is low, it performs close
to Z-DAT. On the other hand, when the query rate increases, it works similar to
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Figure 3.14::Comparison of total.costs! & 1.0)

the naive schemes. This verifies the advantage of the proposed DAT/Z-DAT with
QCR schemes.

3.4 Summary

In this chapter, we have developed several efficient ways to construct a logical ob-
ject tracking tree in a single-sink sensor network. We have shown how to organize
sensor nodes as a logical tree so as to facilitate in-network data processing and to
reduce the total communication cost incurred by object tracking. For the location
update part, our work can be viewed as the extension of the work in [14], and we
enhance the work by exploiting the physical structure of the sensor network and
the concept of deviation avoidance. In addition, we also consider the query oper-
ation and formulate the query cost of an object tracking tree given the query rates
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of sensors. In particular, our approach tries to strike a balance between the update
cost and query cost. Performance analyses are presented with respect to factors
such as moving rates and query rates. Simulation results show that by exploiting
the deviation-avoidance trees, algorithms DAT and Z-DAT are able to reduce the
update cost. By adjusting the deviation-avoidance trees, algorithm QCR is able
to significantly reduce the total cost when the aggregate query rates is high, thus
leading to efficient object tracking solutions.
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Chapter 4

In-network Location Management
for the Multi-sink System

In the previous chapter, it is assumed that there is only one sink in the network.
In this chapter, we explore the possibility of having multiple sinks in the network.
One advantage of having multiple sinksis.to reduce the response time of queries.
In addition, using multiple:sinks can also relieve the traffic congestion problem
associated with a single-sink system_(i.e., using multiple sinks can achieve load
balance more easily). In order.to supportlocation management in a multi-sink
wireless sensor network, we can ‘extend the tree structure used in the single-sink
system by constructing a logical tree for each sink. However, this implies that
updating multiple trees is required when a movement event is detected. Assuming
that there aren sinks coexisting in the network, if each tree is updated indepen-
dently, the update cost will become approximatelytimes. It is desirable to
further reduce the update cost when multiple trees coexist in the network. In this
chapter, by exploring the concept of data aggregation, we propose an algorithm to
efficiently update multiple trees. With proper design, we show that the update cost
increases slightly when the number of trees (i.e., the number of sinks) increases.
Based on the foregoing update algorithm, we formulate the update cost that gives
us hints to develop efficient tree-construction algorithms. Two distributed multi-
tree construction algorithms are presented in this chapter. Experimental results
show that the increased update cost with multiple trees can be compensated by

37



lower query cost and the query cost also dependsnorthe number of sinks.
This allows us to further investigate how to choose the value ahder different
scenarios.

4.1 Preliminaries

4.1.1 Network Model

The network model used in this chapter is the same with that used in the single-
sink system. We consider a WSN to be used for object tracking. We adopt a simple
nearest-sensor trackingrodel, in which the sensor that receives the strongest
signal from an object is responsible for tracking the object (this can be achieved
by [7] and we omit the details). Therefore, the sensing field can be modelled by a
Voronoi graph[4], where each sensor’s responsible area is the polygon containing
itself. Two sensors are callgteighborsif their sensing ranges share a common
boundary on the Voronoi graph. Multiple objects may be tracked concurrently by
the network, and we assume thatfrom mobility statistics, it is possible to collect
the frequency that objects move between each pair of neighboring sensors, called
theevent rate

4.1.2 From Single-sink to Multi-sink WSNs

In the previous chapter, an in-network location management scheme for a single-
sink sensor network is proposed. First, a tfemoted at the sink is constructed.

If an object moves from one sensor to another, update messages will be forwarded
to the lowest common ancestor of these two nodés.iRor example, in Fig. 4.1,

a tree rooted at senser is constructed from thé&' shown in Fig. 3.1(b). When
Carl moves fromH to ', update messages will be forwarded fréimo B and

from C' to B respectively. This allows each noddo always keep a fresh list of
objects that are currently tracked by each of the subtrees rooted etildren.

When a user irt" inquiresCarl1’s location, the query will be sent to the sink first
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and then forwarded along a path of the tree according to the lists maintained by
sensors, as shown in Fig. 4.1.

Figure 4.1: An example of the single-sink system.

In this chapter, we assume that multiple sinks coexistzinOur goal is to
reduce the number of messages transmitted for update and query. A naive way
to extend a single-sink system to‘a multi-sink-system is to construct a virtual tree
T, = (Vg, Er,) for each sinkz, 'whereEy, C Es. For example, Fig. 4.2(a)
extends the network in Fig. 4.1 such that both sensoasid B are sinks. Three
issues should be addressed when multiple trees coexist.

1. Update and query mechanisms:When an object moves, updating multi-

ple trees is required in a multi-sink system. If we apply the same update
mechanism used in a single-tree system to each tree independently, the up-
date cost will increase approximately times, wheren is the number of
trees. This is apparently inefficient. Therefore, update aggregation should
be done to reduce the update cost in a multi-sink system. Further, the query
mechanism should be designed carefully. We will show later that the query
paths from sinks to the target sensor may cause a cycle. The cycle problem

should be avoided.
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2. Multi-tree construction: Our proposed update and query mechanisms can
be applied to any multi-tree system. However, different multi-tree construc-
tion algorithms will cause different update costs. We will formulate the
update cost and point out the factors that affect the update cost. Then, we
propose two efficient distributed multi-tree construction algorithms.

w

. The number of trees used:Obviously, using multiple trees will increase
update cost; however, the increase can be compensated by lower query cost
(this will be verified further through simulation). Because both the update
cost and the query cost are affected by the number of trees used, we will

investigate the proper value of under various scenarios.
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Figure 4.2: (a) TheDLs stored in sensors. (b) An example whéfer2 moves
from G to I andCar1 moves fromH to C.
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4.2 Update and Query Mechanisms in Multi-Sink
WSNSs

4.2.1 Notations and Data Structures

We consider a WSN with sensorsyn of which (denoted by;,i = 1,--- ,m) are
designated as sinks. For each sinkwe assume that a trég, rooted atr; has

been constructed frod. Table 4.1 summaries the notations used in this chapter.
Then, we introduce the data structures used in this chapter. Moreover, each sensor
x will keep two tables in order to process updates and queries:

e SubtreeMemberS,: Itis anm x n table to indicate whether another sensor
is a descendant af in a certain tree. Specifically,(7,,,j) = 1 if sensor
j is a descendant af in treeZ;; ;otherwise,S,(7,.,j) = 0. For example,
in Fig. 4.2(a),Sp(T, F)i= 1 and.Sp(T4;.F') = 0. All values in this table
will not change after all trees are through:with construction.

e DetectedList DL, It is a table-withi.+ 1 entries, wheré: is the number
of neighbors ofr. Each entry maintains a set of objects. For sensor
itself, DL, (x) contains the objects currently being tracked:yFor each
neighbory of z, DL, (y) contains all objects that are currently being tracked
by the subtrees of sonig,,, i = 1,---,m, rooted aty, i.e., DL,(y) =
{o|3z,is.t.o € DL,(2),S,(T,,,z) = 1,andz = p;(y))}. This implies
that if o is tracked by sensarcurrently andy is an ancestor of in a certain
tree, thenr can know how to find by askingy. For example, in Fig. 4.2(a),
D is a neighbor ofA. BecauseS, (T4, G) = 1 andCar2 is tracked byG,
Car2 € DL4(D). (Note that in Fig. 4.2(a) entries with empty set are not
shown.) DetectedList is a dynamic table. When an object moves from
one sensor to another, some sens@rstectedLists have to be modified

accordingly.
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Table 4.1: Summary of notations used in Chapter 4.
distg(u,v) | The minimum hop count betweenandv in G.
nei(v) The neighbors of in G.
distr, (u,v) | The hop count of the path connectingndv in 75,

wg(u,v) | The event rate betweenandv.
lca;(u,v) | The lowest common ancestorofandv in 7,..
pi(v) The parent ob in T,,.

o The root of7,.

4.2.2 The Location Update Mechanism

The goal of location update is to ensure that BetectedLists of sensors are
fresh. The main idea here is that when an objeatoves from sensad’s re-
sponsible polygon to sensbs responsible polygon, for each siak the update
messages should be sent frerandé'alongi,,, to lca;(a, b), the lowest common
ancestor otz andb in 7,,,. The reasoenyfordoing so is that tbetectedLists of
the ancestors dlica;(a, b) will net be affected. by, this movement. Furthermore,
instead of allowing all trees to update independently, we will update trees simul-
taneously with some data aggregation techniques. We make the following obser-
vation. In a system withn trees, @ sensarneeds to maintaip;(z) for eachT,,,
i = 1,---,m. Because the number of neighborsaomay be smaller tham,
some of thep;(z)s may be duplicate and thus can be updated together. This also
implies that when a nodgreceives an update message, nga&@ould update its
DetectedList by considering several trees rather than one tree. Thus, the update
mechanism comprises two parts: (1) the forwarding rule of the update message,
and (2) the updating rule of theetectedList. Furthermore, the update message
sent for the event that an objectmoves from sensar to sensob is denoted by
Update(o, a, b, eventid), whereeventid is to uniquely represent this event.
Forwarding Rule When an objecb moves from sensot to sensor, for
each tre€l,,, every node on the tree paths framto lca;(a,b) and fromb to
lca;(a, b) should receive the update message at least once. Note that if aznode
is on the path fromu to lca;(a, b) in T,, andz # lca;(a,b), thenS,(T,,,a) = 1
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and S,(7,,,b) = 0. Similarly, if x is on the path fronb to lca;(a,b) in T,,
andz # lca;(a,b), thenS,(T,,,a) = 0 andS,(T,,,b) = 1. If z is lca;(a,b),
then S,.(7,,,a) = 1 and S,(7,,,b) = 1. Thus, when any node receives a
newUpdate(o, a, b, eventid) message, node can use the following statement to
determine whether it is on the tree paths froto /ca;(a, b) or fromb tolca;(a, b):

3i((S, (T, a) = 0 A Su(Ty,,b) = 1)V
(So(Ty, a) = 1 A So(Ty,,b) = 0)) (4.1)

(Note that Eqg. 4.1 includes the special cases 6f « andx = b, in which the
movement ofo rather than receiving an update message will maladecking
Eqg. 4.1.) Ifz receives the update message for the first time and there is E,tree
making Eg. 4.1 true, then an update message should be sefittoHowever, if
two treesT,, andT;,, both satisfy Eq. 4.1 angi(«) = p;(x), then only one update
message needs to be sent.(the same applies if multiple trees satisfy Eq. 4.1). This
is what we mean by update aggregation.

Updating Rule When a node is‘notified that an objeanoves from sensar

to sensob, it will update itsDetectedList as follows.

e For sensor, it will remove o from DL, (a) and check whether there exist
a treeT,, and a neighboy such thatS,(7,,,b) = 1 anda = p;(y). If the
answer is affirmative, this implies thatcan findo by askingy. Thus, it
addso into DL, (y).

e For sensob, it will add o into DL,(b) and remove from other entries of

DL, if o appears in other entries.

e For any other sensarthat receives the update message fyom 3:(S,.(7,, b)
= 1Az = p;(y)) is true, this implies that can findo by askingy; thuso
will be added toD L, (y). Otherwisep will be removed fromD L, (y) if o
appears iDL, (y).
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Fig. 4.2(b) shows an example whé&rer2 moves fromG to I andCar1 moves
from H to C'. The modifiedDLs and the reported messages are also shown in
Fig. 4.2(b). Our update scheme ensures that when an abjacives from one
sensor to another, if no packet loss happens and the update procedure can be com-
pleted before» moves to another sensor, then the freshned3etéctedLists of
sensors can be guaranteed.

Next, we derive the number of messages required to be sent per unit time for
location update as follows.

U= (Z U(T@)> - (Z SC(U)) , (4.2)

veVg

whereU (T,,) is the update cost for treg,, if 7,, is the only tree in the network

andSC(v) is the saved cost for senseidue. to the overlap of tree edges among
m trees.U(T,,) can be formulated as

i

U(Tﬂi) - Z (wG<u7 U) X

(usv)EE G A\
(BT,

(distr, (u,lca;(u,0))st distay) (v, lca;(u,v)))), (4.3)

wheredistr, (z,y) is the hop count of the path connectingandy in 7;,. To

explain the meaning of Eq. 4.3, we assume thatis the only tree in the net-

work. When an event occurs dn, v), the update messages will be forwarded to
lca;(u,v) according to the forwarding rule. Eg. 4.3 is similar to the cost function

for a single tree in [16], except that whém, v) € Er, there is no cost because
eitheru or v is lca;(u, v) and thus no update message has to be sent. This leads to
Eqg. 4.3. The formulation ofC'(v) depends on the forwarding schemes. Two for-
warding schemes are considered: the broadcast scheme and the unicast scheme.
Due to the broadcast nature of wireless radio, when a sensor sends an update mes-
sage, we assume all its neighbors will receive the update message in the broadcast
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scheme. In this cas&('(v) can be formulated as

SC)=>"|Gi-1)x Y  walst)|, (4.4)

1=2 (s;t)eEEGA
f(s,t,v)=t

where f(s,t,v) represents the number of trees, each of which,&ay makes
the following statement tru(s, t) # (v, p;(v))) A ((Su(T5;,5) A =Sy (T5,, 1)) V
(Su(T,;,t) N =S,(T5,,8))). Intuitively, this means that when an object moves
from s to ¢t or fromt to s, v will broadcast an update message to its neighbors for
updating tre€l;,, and this broadcast message can update th@sfs, t,v)) trees
simultaneously; thereforé; — 1) messages are saved. This leads to Eq. 4.4.
However, the packet transmission is unreliable in the broadcast scheme. Once
the update messages are lost during the transmid3aia¢ctedLists may not con-
tain up-to-date information, resulting_in the failures of queries. Thus, one also
can adopt the unicast scheme to forward update messages in which each update
message has a designated destination. In this 6&%e;) can be formulated as

m

SC)y= > [Yfe=nx > wes.t) ||, (4.5)

u€nei(v) \ =2 (s,t)EEGA
g(s,t,v,u)=t

wherenei(v) denotes the neighbors ofin G andg(s, t, v, u) represents the num-

ber of trees, each of which, sdy, , makes the following statement trie =
PIONA((5,8) # (0, A(So( Ty 8) AU (T, DV (Sul(To,, ) A=Su(Ts,, 5))).

Eq. 4.5 is similar to Eq. 4.4 except that eachvf neighbors is considered sep-
arately. Though the unicast scheme can provide reliable transmission using ac-
knowledgement mechanisms, the number of saved packets is smaller than that in
the broadcast scheme. We will compare the performances of the broadcast scheme
and the unicast scheme through simulation in which packet loss will be simulated.
Eq. 4.3, Eq. 4.4 and Eq. 4.5 will give us hints for constructing message-efficient
multiple virtual trees.
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4.2.3 The Location Query Mechanism

Now, we describe our location query mechanism. We assume that a user can issue
a query from any sensor. When a sensaeceives a query for objeet there

are two scenarios: (1 does not appear in any of the entries/of.,., and (2)o
appears at least in one of the entriedxf..

In the first scenariog will forward the query to the closest sink, say, in
order to inquireo’s location. The reason for doing so is that, for each sinkt
can be easily shown that all objects tracked by the network will be contained in
DL,,. However, on the query’s way to sink;, if an intermediate nodeg finds
thato appears iDL, then the second scenario will be initiated immediately.

In the second scenario, we will show havwean forward the query to locate
We can model the WSN responsible for tracking objess a directeduery graph
G, = (Va, B ), where a directed edde:, v) & E, if and only ifo € DL, (v).

Our location update mechanism guarantees thatarwards the query along the
query graphi’,, theno is always reachable. For example, Fig. 4.3(a) shows the
query graphG'.,., of Fig. 4.2(a)forCarI, whereA and B are sinks. It means
that z can simply forward the query to.any such thato € DL,(y). This is
repeated until a sensersuch thab € DL.(z) is reached. However, the fact that

o is reachable vig from = in G, does not necessarily imply th&f is cycle-free
when multiple trees coexist in the network. For example, Fig. 4.3(b) shows two
treesTy, andTz and Fig. 4.3(c) shows the query graph 4«1, which have a
cycle containingD, F', andG. A query forwarded as above may loop infinitely.

A simple way to solve the infinite loop problem is to force a query to al-
ways travel along a designated tree. In order to achieve this, we can add a field
tree_index to the query request. Once thee_index is set by a certain sensor,
the following sensors can follow the tree designatediay_index. Here, we pro-
pose an alternative solution which imposes that all trees be shortest-path trees. If
so, not only the query and update paths can be shortest, but also the corresponding
G for each objecb is always cycle-free. Thus, our query mechanism will work
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Figure 4.3: (a) The query gragh,,,, of Fig. 4.2(a) forCarl. (b) Another ex-
ample of a two-tree system. (c) The query graph of (b)far1, which contains
acycle.

correctly.

Theorem 4. If all trees are shortest-path trees, the query graphfor each object
o tracked by the network mustbe cycle-free:

Proof. Without loss of generality, we assumes tracked by sensor currently.

For the purpose of contradiction, we assume that all trees are shortest-path trees
but a cycle< cg, ¢y, ..., i, co = €Xists inG;. Let c; be the vertex in the cycle

with minimumdistq(z, ¢;). The factthate;, c; 1) is an edge in the cycle implies
thato € DL, (c;j41). This means that there exists a tree, $gythat contains the
edge(cj, ¢;+1), which can lead ta:. Becauselists(z, cjp1) > distq(z, ¢;), Ty,

must not be a shortest-path tree. This contradicts our assumption that all trees are
shortest-path trees. Therefo(&, must not contain a cycle. O

After the query reaches the sensor currently tracking the queried object, the
sensor can reply to the sensor initiating the query through a shortest path. In the
case that the user is capable of mobility, the user should update with the initiating
sensor its position until a reply is received. This would solve the mobility problem.
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4.3 Multi-Tree Construction Algorithms

The above derivations have suggested that trees rooted at sinks should be shortest-
path trees to avoid the cycle problem. In addition, following the derivation of
Eq. 4.2, these trees should be constructed carefully to reduce communication
costs. Below, we propose two distributed multi-tree construction algorithms,

givenoy, o9, ...,0,, as the sinks.

4.3.1 The MT-HW Algorithm

From Eq. 4.3, we observe that when an eflger) becomes an edge @f,., the
events occurring oitu, v) do not cause any message to be reported for updat-
ing 7,.. Therefore, in MT-HW (multi-tree construction with the high-weight-first
property) algorithm, an edge:, v).with-higher weight will be considered for be-
ing included into a tree earlier.

First, we define the termandidate partentsA-sensory is called a candidate
parent of: for sinka;, if y is #’s neighborandistg(o;, ) = distg(o;, y)+1. We
assume that when the network is initiated, each sinkill flood a message in the
network, which helps each sensete derivedist(o;, ) and thuse’s candidate
parents. The MT-HW algorithm works as follows. Each sensavill sort its
neighbors in a decreasing order according to the event rates between it and its
neighbors. Then, for each siak, = will pick one neighbory as its parent that has
the highest event rate amontg candidate parents fer; and sety = p;(z).

Theorem 5. If GG is connected, the trees constructed by the MT-HW algorithm
must be connected shortest-path trees.

Proof. SinceG is connected, for eachi,,, a sensox (z # ;) can always find one
candidate parent as its parentlin. Thus,T,,, will be a connected tree. Now, we
further show that’,,, will be a shortest-path tree. By the definition of the candidate
parent, the parent must be closewtahan the node itself. Therefore, &I}, are
shortest-path trees. O
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4.3.2 The MT-EO Algorithm

From Eg. 4.4 and Eq. 4.5, we observe that if we can increase the number of the
tree edges that overlap with each other, the valugé@fv) may increase antf
can be reduced. The MT-EO (multi-tree construction with the edge-overlap-first
property) algorithm is designed to increase the level of the overlap among tree
edges.

As the MT-HW algorithm, each sensomwill determine all candidate parents
for each sinks;. Each ofz’s neighbors is associated with amerlap counteffor
x. The counter is increased by one whenever a neighboerigftonsidered as a
candidate parent for a sink. Thenselects the neighbor, say whose overlap
counter is the largest. For each simkwherey is a candidate parent of, we
sety = p;(x) for T,,. Then, the overlap,counters of afk neighbors are recom-
puted for those sinks for whieh has not yet determined its parents. Again, the
neighbory whose overlap counter is the largest is selected'sparent for the
corresponding sinks. This procedureis repeated uihitds determined its parents
for all sinks.

Theorem 6. If GG is connected, the'trees constructed by the MT-EO algorithm
must be connected shortest-path trees.

Proof. The proof is similar to that of Theorem 5. The theorem holds because a
non-sink node can always find a parent that is closer to the sink. O

In fact, we can easily combine the MT-HW algorithm with the MT-EO algo-
rithm and vice versa. Whenever there is a tie (either the same event rate or the
same overlap counter value), the other algorithm can be used.

4.4 Simulation Results

We have simulated a sensing field of sizg& x 256, where1024 sensors are
deployed in the sensing field. Two deployment models are considered. In the
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regular deployment model, sensors are regularly deployed2s<a32 grid-like
network. In the random deployment model, sensors are randomly deployed. In
both models, sinks are determined by uniformly partitioning the sensing field into
equal-size grids according to the number of sinks given and choosing the sensor
that is the nearest to the center of the grid as the sink. Further, the event rates of
links are generated based on thedified city mobility modgresented in Sec. 3.3.
Queries could be issued from any sensor. The query rate is defined as the number
of queries generated in the network per unit time. We compare our schemes with
other two schemes callggF andMC respectively. In the QF scheme, no update
message will be sent. When a user intends to query an object’s location, the query
message will be flooded in the network. In the MC scheme, when an object moves
to a new sensor, a multicast spanning tree will be formed from the new location of
the object to all sinks and the_ update message containing the up-to-date location
information of the object is sentito-all sinks. In‘this scheme, any query only needs
to be sent to its nearest sink. Based on the tree construction algorithms and the
forwarding schemes, four schemes proposed by us are compared with the QF and
the MC schemes. Specifically, in the HW-B.scheme, the MT-HW algorithm and
the broadcast forwarding scheme‘are 'used. In the HW-U scheme, the MT-HW
algorithm and the unicast forwarding scheme are used. In the EO-B scheme, the
MT-EO algorithm and the broadcast forwarding scheme are used. Finally, in the
EO-U scheme, the MT-EO algorithm and the unicast forwarding scheme are used.

As mentioned above, when an object moves from one sensor to another, if
no packet loss arises and the update procedure can be completed within a period
during which the object does not move again, our proposed update mechanism
can ensure that tHeetectedLists of sensors are fresh. However, packet loss is a
common phenomenon in a wireless network and transmission delay should also
be taken into consideration. In order to investigate the impact of packet loss,
we develop an event-oriented simulator using C language in which the unslotted
CSMA defined in IEEE 802.15.4 [12] is implemented. Because we observe that
the collision phenomenon is very severe, we assume that a node has t0 wait
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Table 4.2: Parameters used in the simulation for multi-sink systems.

Buffer Size 10
The length of DATA 30 Bytes
The length of ACK 17 Bytes
Bit rate 250 kb/s
Symbol rate 62.5 ksymbol/s
aUnitBackoffPeriod 20 symbols
aTurnaroundTime 12 symbols
macMinBE 3
aMaxBE 5
macMaxCSMABackoffs 4
The maximum number of retransmission 5
Simulation Time 1 hour
Number of Objects 128

60 milliseconds to start a new transmission after it successfully transmits a packet

in order to avoid multiple sensors transmit packets at the same time. Finally, we

assume each sensor’s sending buffer is:limited such that for a sensor, if there are
too many packets to be sent simultaneously, some of packets will be discarded.
The related parameters are 'shown in Table 6:1.

4.4.1 Impact of Objects’ Speeds

First, we consider the scenario in which the update cost dominates the overall
communication cost. To achieve this, we compare all schemes under various ob-
jects’ speeds. Higher the speed is, more events are generated; thus, the update
cost will dominate the performance. In Fig. 4.4, sensors are deployed regularly
and four sinks are deployed. The query rate is set to be 1 query/second in this ex-
periment. Fig. 4.4(a) shows the communication cost (i.e., the number of packets
transmitted in the network) of these schemes with the value of object speed varied.
As can be seenin Fig. 4.4(a), the update cost is constant in the QF scheme because
no update packet has to be sent. The update costs of all other schemes will grow
when the speed becomes higher since more update packets have to be sent. The
update cost of the MC scheme grows enormously, because no in-network process-
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Figure 4.4: Performance study with objects’ speeds varied, where sensors are
deployed regularly and four:sinks are deployed.

ing technique is applied. Our proposed schemes outperform the QF scheme and
the MC scheme when the speed is lower than 10 units/second. Since the sens-
ing radius of a sensor is 4 units, 10 units/second is relatively high. We further
give an insight into our proposed scheme. Obviously, the broadcast forwarding
scheme has lower update cost than the unicast scheme has. However, as can been
seen later, the unicast scheme has higher query success rate than the broadcast
scheme has. Besides, we can see that the MT-EO scheme outperforms the MT-
HW scheme slightly, because more packets are saved due to the overlap of tree
edges.

Fig. 4.4(b) shows the query response time of these schemes, where the query
response time is defined as the time elapsed between the time at which the query
issued and the time at which the query result returned. The MC scheme is the best
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because any query only has to be forwarded to the sink. Our proposed schemes
are slightly worse than the QF scheme because two phases are required in our
schemes. Although the MC scheme has the best performance in terms of query
response time, the query result may not be the most up-to-date one. This problem
becomes further severe when packet loss happens. A measurement, query error, is
defined as the number of hops between the real location of the object and the lo-
cation carried by the query reply at the time at which query is returned to the user.
In Fig. 4.4(c), it can be seen that the MC scheme suffers from higher query errors.
Finally, Fig. 4.4(d) shows the query success rates under different schemes. Note
that a query may fail due to packet collision, packet loss, buffer overflow and con-
taminatedDetectedLists. More packets transmitted in the network usually means
more collision. Thus, our proposed scheme and the MC scheme perform worse
than the QF scheme does eventually, but.all schemes have similar performance
under reasonable speed. Note that the broadcast forwarding scheme has the worst
performance due to the contaminai2ekectedL istproblem; however, the unicast
forwarding scheme can be'used. ta solve this problem.

Since the number of sinks is an important issue in this chapter, the scenario
used in Fig. 4.4 is applied again‘in“Fig. 4.5 except that 256 sinks are deployed
now. It is observed that if the number of sinks is large, a considerable amount
of update messages will be generated. Thus, when the update cost dominates
the communication cost, using less sinks is better. Finally, experiments with the
random deployment model is investigated in Fig. 4.6, where the number of sinks
is 4. We can see that the success rates under the random deployment model are
lower than that under the regular deployment model, because the collision phe-
nomenon is very severe in the random deployment model. When a node has many
neighbors, this node usually suffers severe collision due to the contention and the
hidden terminal problem. Therefore, we further compute the average number of
neighbors of a sensor. The average numbers of neighbors of a sensors under the
regular deployment model and the random deployment model are 3.875 and 5.666

respectively. Thus, we conjecture that the severe collision phenomenon in the ran-
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Figure 4.5: Performance study with objects’ speeds varied, where sensors are
deployed regularly and 256 sinks are deployed.
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Figure 4.6: Performance study with objects’ speeds varied, where sensors are
deployed randomly and four sinks are-deployed.

dom deployment model is caused by the hidden terminal problem and the higher
contention between sensors. We further give an insight into our proposed scheme.
We can find that the performance of the unicast forwarding scheme is very bad due
to the buffer overflow problem. The reason can be explained as follows: when an
event occurs, there are averagely 5.666 update packets will be injected into the
sending buffer and the length of sending buffer is 10 only. Thus, the length of
the sending buffer should be designed carefully. Other most observations made
under the regular deployment model could be applied to the random deployment
model. In the following experiments, we only show the results under the regular
deployment model.
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4.4.2 Impact of Query Rates

Now we consider the scenario in which the query cost dominates the overall com-
munication cost. To achieve this, we compare all schemes by adjusting query
rates. When the query rate is high, the query cost will dominate the performance.
The object’s speed is set to be 1 unit/second in this experiment. 4 and 256 sinks
are deployed in Fig. 4.7 and Fig. 4.8 respectively. First, we compare the commu-
nication costs under different schemes. As shown in Fig. 4.7(a) and Fig. 4.8(a),
the QF scheme is the worst one, because queries are disseminated by flooding.
On the contrary, in our proposed schemes, queries are disseminated by unicasting.
Thus, our proposed schemes have the best performance. We can further observe
that when the number of sinks increases from 4 to 256, the communication cost
of the MC scheme also grows due to.higher update costs. However, our proposed
schemes can achieve almostthe same cast when the number of sinks increases.
This is because using multiple sinks can reduce the query cost by a shorter query
path and the saved query cost can be used to compensate the increased update cost.
Thus, the advantage of using.multiple-sinks can be achieved when the query cost
dominates the performance. In‘addition;when the number of sinks increases (i.e.,
from 4 in Fig. 4.7 to 256 in Fig. 4.8), it can be seen that the query response time
of our proposed schemes in Fig. 4.8(b) is slightly smaller than that in Fig. 4.7(b)
due to shorter query paths. As shown in Fig. 4.7(c) and Fig. 4.8(c), although the
MC scheme is the best one in terms of query response time, it is the worst one in
terms of query error. Finally, in Fig. 4.7(d) and Fig. 4.8(d), we can see that the QF
scheme is the worst one in terms of success rate, because of the collision incurred

by the flooding.

4.4.3 Impact of the Number of Sinks

From the previous experimental results, it can be seen that when the query cost
dominates the communication cost, using multiple sinks can achieve better per-
formance. Thus, we further investigate the impact of the number of sinks on the
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Figure 4.7: Performance study with query rates varied, where sensors are de-
ployed regularly and four sinks are deployed.
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Figure 4.8: Performance study with query rates varied, where sensors are de-
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ployed regularly and 256 sinks are deployed.
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performance. The query rate is set to be 10 queries/second and the objects’ speed
is set to be 0.333 and 0.111 respectively. In Fig. 4.9(a) and Fig. 4.10(a), it can
be seen that the communication costs almost do not increase when the number of
sinks increases, because the increased update cost can be compensated by lower
query cost. As can be seen in Fig. 4.9(b) and Fig. 4.10(b), using multiple sinks
can reduce the query response time slightly due to shorter query paths. Fig. 4.9(c)
and Fig. 4.10(c) show the values of the standard deviation of the number of pack-
ets transmitted by each sensor. It is observed that when the number of sinks in-
creases, the values of the standard deviation are reduced. This is because queries
are dispersed to multiple sinks rather than a single sink. Thus, load balance can be
achieved by using multiple sinks. Finally, in Fig. 4.9(d) and Fig. 4.10(d), it can be
seen that using multiple sinks is able to increase the success rate, because shorter

query paths could result in less,collision.

4.4.4 Multi-Sink Systems with Partial Storage

As mentioned above, using multiple-trees:will increase the update cost. A simple
way to reduce the update cost while achieving the advantage of load balance at
the same time is to explore thgartial storage technique The partial storage
technique is motivated by GHT [23]. The basic idea is that each object’s location
will be stored in only some of the sinks. In our simulation, the partial storage
technique is implemented as follows.

First, we evenly divide the sensing field into zones, each of which has an
unique ID. For each zone, the sensor closest to the center of the zone is designated
as the sink. Then, each object is hashediztanes, wheré(< m) is a predefined
number, and an object only needs to update its location with the sinks ofithese
zones.

Now, we demonstrate the benefit of the partial storage technique by simula-
tion. The query rate is set to be 2 queries/second and the objects’ speed is set
to be 1 unit/second. We compare the EO-B and the EO-U schemeswittks
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Figure 4.9: Performance study with the number of sinks varied, where the objects’
speed is set to be 0.333 unit/second.
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Figure 4.10: Performance study with the number of sinks varied, where the ob-
jects’ speed is set to be 0.111 unit/second.
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Figure 4.11: The performance of the partial storage technique.

against the EO-B-PS and the EO-U-PS schemes (which mean the EO-B and the
EO-U schemes extended with the partial storage technique) with 1024 zones and
a hashed zones per object. Fig. 4.11 shows the results with the valueat

ied. It can be observed that, although the communication costs of the EO-B-PS
scheme and the EO-U-PS scheme are higher, the values of the standard deviation
of the numbers of packets transmitted by each sensor are lower. Thus, using the
partial storage technique can achieve better load balance.

4.5 Summary

In this chapter, we have proposed an in-network update and query algorithm for
a multi-sink WSN. This algorithm strikes the tradeoff between the update and

guery costs. Having multiple sinks is important when the network scale is large
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or when the query rate is high. The corresponding update cost is formulated for-
mally. Based on the formulation, we have presented two distributed algorithms to
construct multiple trees. We have verifies the benefits of a multi-sink WSN from
different aspects, including the total (update plus query) cost, the number of sinks,
query response time, query success rate, and load balance factor.
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Chapter 5

Imprecision-tolerant Location
Management Model

Since inaccuracy, or even error, of sensing data is inherent for WSNs, applica-
tions of WSNs usually have to tolerate some degree of imprecision. This property
has been exploited in the design of network protocols for WSNs. For example,
precision-constrained data aggregation is considered in [28], and a storage sys-
tem that supports drill-down queries-with-different precision levels is proposed in
[11]. Similarly, in moving object environments, maintaining the exact locations
of objects anytime is almost infeasible'[8, 33]. Not only the positioning results
are error-prone, but also the data transfer delay and object mobility make the lo-
cations of objects inaccurate. Fortunately, imprecision is tolerable in many object
tracking applications. For example, when life scientists intend to track an animal,
it may be sufficient to know its moving direction rather than its exact location.
In addition, the location information recorded several hours ago, instead of at
the current time, may still be helpful for the life scientists to understand the ani-
mal’s daily life. Therefore, modeling in-network location management to support
imprecision-tolerant queries is desirable for object tracking sensor networks.

A location management scheme supporting imprecision-tolerant queries for
object tracking sensor networks has been studied in [33]. The location information
of an object is stored in a centric storage node and a local storage node. When a
user intends to know the location of an object, the query will be forwarded from
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the querying node to the centric storage node of that object. If the precision level
is satisfactory, the centric storage node will reply to this query. Otherwise, the
query will be forwarded to the local storage node, which has more precise location
information of that object. This scheme has two major drawbacks. First, when the
querying node is very close to the local storage node of the queried object, the
query will still be forwarded to the centric storage node, which may be far from
the querying node. Second, only two precision levels are provided.

5.1 Preliminaries

5.1.1 Background and Motivations

In this chapter, we propose an in-network location management scheme to sup-
port imprecision-tolerant queries for object. tracking sensor networks. Two types
of imprecision are consideredSpatial imprecisiormeans that an object could

be locatednear the location answered by the WSN rather trarthe location
answered by the WSNlemporal.imprecisioomeans that the location answered

by the WSN may be recordetkar the current time rather thaat the current

time. For both spatial imprecision ‘and temporal imprecision, we argue that an
imprecision-tolerant location management solution should achieve two desirable
goals. First, multiple precision levels should be provided. Second, the query cost
should be proportional to the precision level. For example, for spatial impreci-
sion, the answer provided by node C should be more accurate than that provided
by node A, because node C is farther from the sink (Fig. 5.1(a)). Similarly, for
temporal imprecision, the location answered by node C should be newer than that
answered by node A (Fig. 5.1(b)).

We observe that the tree-based location management schemes proposed in
Chapter 3 could achieve these two goals naturally. For example, Fig. 5.2(a) shows
a tree used for location management. In the tree-based location management
scheme, when an object moves from one sensor to another, the update message
will be forwarded to the lowest common ancestor of those two sensors. Thus,
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Figure 5.1: Examples of spatial imprecision and temporal imprecision.

when an object originally located outside the spatial range of the subtree rooted at
y moves into the range of at timet,, nodexz (the parent ofy) will be updated.
Thus, x knows that the object is located dtat timet,. When a user receives
such an answer provided hy the user can only drive that the object is located

at some sensor belonging to a descendant @n the contrary in Fig. 5.2(b), if

the query is forwarded tg, y.can provide that'the object is located/atat time

t1, and the user can derive:that the object is located at some sensor belonging to a
descendant of. Therefore,-we can-see that a user can get more precise location
information when the query-is forwarded more deeply down the tree. Further,

if the tree is adeviation-avoidancéree defined in Chapter 3, it ensure thats the
hop count between and the sink will be less than the hop count betweemd

the sink. It implies that the query cost will be proportional to the precision level.
(Note that when a query is not issued from the sink, it is possible that the querying
node is close to the object rather than the sink, and it needs to forward the query to
the sink first. This may violate this goal. In this case, the multi-sink system pro-
posed in Chapter 4 can be used to solve this problem, because each query is sent
to the nearest sink.) In addition, because of its hierarchical structure, a tree-based
solution can provide multiple precision levels easily.

Therefore, we propose a tree-based location management model to support
imprecision-tolerant queries. To begin with, we define the format of imprecision-
tolerant queries and describe how such queries are processed. The proposed query
model can be applied to any tree structure. We then make some observations
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Figure 5.2: A tree-based location management scheme.

regarding the relationship between query cost and tree structure, and propose a
tree construction algorithm tofacilitate the proposed imprecision-tolerant location
management model by reducing the query. cost while minimizing the increment
of the update cost. Finally,zperformance studies are conducted via simulations.

5.1.2 Network Model

The network model used in this chapter is the same with that proposed in Chap-
ter 3. We consider a WSN to be used for object tracking. We adopt a simple
nearest-sensor trackingodel, in which the sensor that receives the strongest sig-
nal from an object is responsible for tracking the object (this can be achieved by
[7] and we omit the details). Therefore, the sensing field can be modelled by a
Voronoi graph[4], where each sensor’s responsible area is the polygon containing
itself. Two sensors are callateighborsif their sensing ranges share a common
boundary on the Voronoi graph. Multiple objects may be tracked concurrently by
the network, and we assume that from mobility statistics, it is possible to collect
the frequency that objects move between each pair of neighboring sensors, called

theevent rate
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5.2 Imprecision-tolerant Location Management Model

We will propose a tree-based, imprecision-tolerant location management model
in this section. Below, we will first introduce the update and query mechanisms.
Since the update and query mechanisms can be applied to any tree structure, we
will then discuss how to reduce the communication cost (i.e., update cost plus
guery cost) by adjusting the tree structure. We observeuthatrrelated sensors
should not be put together under a subtree to reduce the query costcaide

lated sensorshould be put together to minimize the increment of update cost,
where the formal definition of correlation of sensors will be introduced later. We
will discuss how to collect query statistics to identify the correlation of sensors.
Finally, based on query statistics, we propose a tree construction algd@hm
(Imprecision-tolerant Query Tr@doreduce the query cost while minimize the
increment of the update cost.

5.2.1 Imprecision-tolerant Update and Query Mechanisms

In this subsection, we will present the update and query mechanisms used in the
imprecision-tolerant model. We assume- a tfemoted at the sink has been con-
structed. Each sensarwill maintain an object listOL, that stores the object
information known byr. For each object in OL,, three data are recorded:

e o.next: This information is used for forwarding the query to find the object.
If ois tracked byr, theno.next is z itself. Otherwisegp.next will be a child
of z, ando is tracked by a sensor that is a descendantiafzt.

e o.location: This information is stored the last location information «of
known byz.

e o.time: Thisinformation is stored the newest update time of the information
of o.

Now we describe the update mechanism. The main idea is forwarding update

packets to the lowest common ancestor. When a senseceives an update
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packetUpdate(o, a, b, t) (i.e, objecto moves fromu to b at timet), = will take the
following actions (For simplicity, we say a node is also a descendants of itself.):

e If b is not a descendant of, thenz will remove o from OL,, because
the queries ob will not be forwarded tar anymore. Theng will further
forward theUpdate(o, a, b, t) to its parent.

e If bis a descendant of buta is not a descendant af, thenz will add o's
information intoOL,. If x = b, theno.next will be set tob. Otherwise,
o.next is set to the child of: that sendd/pdate(o,a,b,t) to z. In addi-
tion, o.location ando.time are tob andt respectively. Theny will further
forward theUpdate(o, a, b, t) to its parent.

e If both ¢ andb are descendants,ef(i.e., = is the lowest common ancestor
of a andb), thenz will modify_o’s information inOL,. If z = b, then
o.next Will be set tob. :Otherwisep.next 1sset to the child of that sends
Update(o,a,b,t) to z+ In addition, o.locatzon ando.time are tob andt
respectively.

Next, we define the query format and the query mechanism. The query used in
this work can be represented @sery(o, tolerant_radius, tolerant_interval),
wheretolerant_radius is used for supporting spatial imprecision, and
tolerant interval is used for supporting temporal imprecision. Before describing
the query mechanism, we first defiG® RCLE(x,r) as the circle area that is
centered at sensarand is with radius-.

The imprecision-tolerant query mechanism operates as follows. When a sen-
sorz (including the sink) receives a queuery(o, tolerant radius, tolerant_interval),
x will check O L, and take the following actions:

¢ If the queried object is tracked hycurrently (i.e.,0.next = x), thenz will

reply the query immediately.
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¢ Ifthe queried object is not tracked bycurrently, thenc will check whether
both of the following conditions are true or false. We assumedhatct =
y, wherey # .

1. Vz € Subtree(y), z is insideCI RC LE(o.location, tolerant_radius),
and

2. Current_Time > o.time > Current_Time — tolerant_interval,

where Subtree(y) is the set of sensors that are members of the subtree
rooted aty (note thaty € Subtree(y)), andCurrent_Time denotes cur-
rent time. Based on the checkwill act as follows.

— If both of these two conditions are true will reply the query so that
the user will know thab is located ab.location at timeo.time.

— Otherwise, the query will.be. further forwardedyantil the object is
found or both of the aboveé conditions are true.

We further explain these twao.conditions. The first condition is for spatial im-
precision. Theorem 7shows that if the first condition is true, the distance between
o.location and the real location af will be less than or equal twlerant_radius.

Thus, o.location is the acceptable answer for this query. The second condition
is for temporal condition. Intuitivelyy.time is acceptable only when its value is
larger than or equal t6'urrent_Time—tolerant _interval. An example is shown

in Fig. 5.2, where we assume a quélyery(Dog, tolerant radius, tolerant _interval)
is issued. (Note that the dotted circles shown in Fig. 5.2(a) and Fig. 5.2(b) are
CIRCLE(A,tolerant_radius) andC'I RC LE(B, tolerant_radius), respectively.)

In the case of Fig. 5.2(a), we can see thaannot reply this query evetiurrent Time >
to > Current_Time — tolerant_interval, becauseC is one ofy’s descen-
dants and”' is not located inC'IRCLE(A, tolerant_radius). On the contrary,

in the case of Fig. 5.2(b)y can reply the query ilCurrent Time > t; >
Current_Time — tolerant_interval, because: and all of its descendants are
located inCIRCLE(B, tolerant_radius).
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Theorem 7. For an objecto known by sensog, assume thab.next = y. If
Vz € Subtree(y), z isinsideC1RC LE(o.location, tolerant_radius), then the
distance between.location and the real location ob will be less than or equal

to tolerant_radius.

5.2.2 Tree Optimization
Query Statistics

Later, we will show thatincorrelated sensorshould not be put together under a
subtree to reduce the query cost whitarelated sensorshould be put together
to minimize the increment of update cost. Thus, we first present how to collect
query statistics to identify the correlation of sensors.

The statistics is done by the sink. The sink will maintain a coumtefueried
for each sensar. After a queryQuery(o, tolezant_radius, tolerant_interval)
returns to the sink with the result indicating, that the object is located at sensor
the sink will increaser.be_queried by 1 In addition, thecorrelated sensoref «
will also be recorded. Based on the query format defined in Sec. 5.2.1, we define
the correlated sensors are those locate@diC' L E (z, min(tolerant_radius,
tolerant_interval x avg_speed)), whereavg_speed denotes the average speed of
the queried object.

The query statistics will be used for the tree construction algorithm. Thus,
a guestion is how to do the query statistics before the tree is constructed. We
propose two approaches. The first approach is cadledl-collection In this
approach, if a query is issued at tirhand the queried object is located at sensor
x at timet, thenx.be_queried will be increased byl. This approach cat collect
the most precise data, but this approach is unrealistic, because the exact location
of the object at time is hard to get precisely.

The second approach is callede-collection in which acollection treg(e.q.,
the DAT tree presented in Chapter 3) will be used initially to do query statistics.
Then, by this query statistics, the tree optimized by considering the imprecision-
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Figure 5.3: The values @k _queried of sensors collected by (a) ideal-collection
and (b) tree-collection, where the DAT tree is used.

tolerant queries can be constructed. However, because imprecision is unavoidable
in the tree-collection scheme, the result of statistics may be different from that
collected by ideal-collection. ‘Fig. 5.3 sHo‘Wsﬁ f[he valuesaofueried of sensors
collected by ideal-collection'and treF%qpligctién respectively, where 1024 sensors
are randomly deployed in 266 x 256 “fiél"'d with i’miform distribution and each
sensor is represented as a Voronou;eLL We can see that the results are similar.
Even the result collected by’ the lQT (Imprecision-tolerant Query Tree) tree that
will be described in the next subsectlon Is also similar to those collected by ideal-
collection and the DAT tree. The reason is that the query is just replied early in
the tree-collection approach and the error is acceptable even although the replied
result may be imprecise. Thus, we can construct a tree initially to do query statis-
tics, and then construct a new tree by considering imprecision-tolerant queries to
reduce the communication cost further.

The only one remaining question is the rule used for determining the cor-
relation between two nodes. Based on the query statistics, we define a func-
tion Confidence(a,b) asN(a,b)/a.be_queried, whereN (a, b) is the number of
queries in whictu is queried and is one of correlated sensors (Ibn fidence(a, b)
> min_condi fence, we say thab is a correlated sensor of

72



Figure 5.4: Some observations.

Imprecision Query Tree Construction Algorithm

We argue that uncorrelated sensors should not be put together under a subtree to
reduce the query cost while correlated sensors should be put together to minimize
the increment of update cost. We use eéxamples to explain the reasons.

First, we focus on the spatial-imprecision. In Fig. 5.4(a), where the dotted
circle denote€'] RC LE( f, tolerant_radiws), whenx receives a query for object
o ando.location is f, it needs to forward the query tg because not all members
of Subtree(g) are located irCLRCLE(f, tolerant_radius). On the other hand,
in Fig. 5.4(b), we can see that when uncorrelated sensorsda(je.¢ andg) are
removed from the subtree, can reply this query now. Thus, the query cost is
reduced. However, in Fig. 5.4(b), we can see that when an object moveg from
to e, update packets have to be sentrtoThus, when we put correlated sensors
together, the increment of update cost can be minimized.

For the temporal-imprecision, similar results can be derived. Now, we as-
sume the dotted circle shown in Fig. 5.4G9 RC LE(f,tolerant_interval x
avg_speed), whereavg_speed denotes the average speed of the queried object.
This means that aftenlerant _interval, the object may be located at the outside
of the circle. However, if the object is still located in the subtree,ef.time will
not be updated. On the contrary, when we remove the uncorrelated serysor of
(e.g., Fig. 5.4(b) and Fig. 5.4(c)).time will be updated so that could reply this

query.
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Figure 5.5: (a) The basic idea of constructing a tree. (b) The problem arising when
connecting two subtrees.

Based on the observations mentioned above, we develop a tree construction
algorithm IQT. The basic idea is dividing sensors into subtrees formed by corre-
lated sensors and then connecting those subtrees into a tree as shown Fig. 5.5(a).
However, in Fig. 5.5(b), we cannote that wh&nbirece2 connects tcubtreel,
the composed members Sibtreel are changed. Now when sengoreceives
a query for objecb ando.location is a, the probability thap cannot reply this
query is high, because some uncorrelated sensors (i.e., those serttdrs-ia2)
are attached t6ubtreel.

One way to solve this problem is connecting all subtrees to the sink. Ob-
viously, this solution is not scalable, because when an object moves from one
subtree to another subtree, update messages have to be sent to the sink. Thus, we
propose a backbone-based solution to solve this problem. First, some sensors will
be selected to be backbone nodes. These backbone nodes will form a backbone
tree. On the other hand, other non-backbone nodes will form subtrees according
to the query statistics. Finally, all subtrees are connected to the backbone to form a
single tree. The pseudo-code of the IQT algorithm is shown in Algorithm 3, where
G denotes the modeleed network graph giftldenotes the query statistics. The
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details of each procedure will be further described in the following paragraphs.

Algorithm 3 IQT(G, Q5S)
1. Backbone-Construction(G, QS)
2. Subtrees-Formation(G, QS)
3: Connecting-Subtrees-To-Backbone(G)

Backbone-Constructiof). The first step oBackbone-Constructighis se-
lecting backbone nodes. Recall that the major task of backbone nodes is to reply
the queries early so that the queries do not need to be forwarded to the subtrees.

Thus, two principles should be followed when selecting backbone nodes:

e The backbone node should be close to the.sik can see that when the
backbone node is close to the roots of the subtrees, the saved query cost is
limited. On the contrary, when the backbone node is close to the sink, the
backbone node can reply the queries more early.

e The value obe_queried of a backbone node should be lowhe IQT al-
gorithm will attach subtrees to the ‘backbone nodes later and most nodes of
the subtrees are not the‘correlated node of backbone nodes. Thus, when
the result of a query is a backbone node (recall that the valte @ieried
of the backbone node will be added by 1 in this case), this query usually
will be forwarded to that backbone node (i.e., no query cost can be saved).
Therefore, this is the reason that the sensor that is queried rarely should be

selected.

Procedure 4 shows the pseudo-code oBhekbone-Constructioprocedure and

the backbone nodes selection procedure is from line 1 to line 13, where two pa-
rameters are used. The first paramete(0 < o < 1) is used to limit the
values ofbe_queried of backbone sensors. We can see that the sensors that are
queried rarely will be selected. (Note that we can also see that at|mostV;||
backbone nodes will be selected.) On the other hand, the second par@meter
(0 < B < 1) is used to limit the distance between the backbone node and the
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sink so that the backbone nodes can be the nodes close to the sink. (Note that
MAX_HOPCOUNT = max{hop_count(x, sink)|Vz € V5})

After selecting the backbone nodes, these backbone nodes fbatkaone
subgraph(denoted byBG = (Vpq, Epc)), in which Vi is the set of backbone
nodes and an edge belongsHg; if both of its two incident nodes are backbone
nodes. Then, the DAT algorithm proposed in Chapter 3 is rui6h The rea-
son to do so is to connect backbone nodes and minimize the update cost locally.
BecauseBG may be disconnected, it is possible that some backbone nodes do
not have parents after running the DAT algorithm. Obviously, a backbone node
should choose a parent that is also a backbone node. Thus, a backbone node
that does not have a parent will choose a backbone paakeits parent so that
hop_count(sink, ) = hop_count(sink,y) + hop_count(x,y). This ensures that
the tree will be deviation-free, +If there are. more than one such backbone node,
then the sensay that makeswop_count{z, y) minimum will be selected. The rea-
son why minimum is chosen is to reduce the update cost. Procedure 4 shows the
related pseudo-code (fromiine 1410 line 24).

Subtrees-Formatiof). For-non-backbone nodes, they should form subtrees
based on the query correlation as we mentioned above. To begin with, we sort non-
backbone nodes bye_queried in increasing order. The reason why increasing
order is used is explained as follows: the best tree for reducing query cost is the
one where each non-backbone node connects to a backbone node alone. In this
case, we can see that for a non-backbone node, no other uncorrelated sensors
will exist. However, this will incur higher update cost. So we prefer to form
correlated sensors into subtrees to minimize the increment of update cost. Thus,
when we examine the non-backbone nodes in increasing order, the sensors with
lower be_queried will form subtrees first and the sensors with higherueired
have higher opportunity to be alone. (This ensures that the sensors with higher
be_queried have no uncorrelated sensors for each query.)

Then, we examine each node in If a nodex € L is not examined yet,

then it will form a subgraphbT = (Vsr, Esr) first. Thus, the major task of
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Procedure 4Backbone-Constructidtyr, ().S)

1:
2:

3:

e

10:
11:
12:
13:
14.
15:

16:
17:
18:
19:
20:
21:
22:

23:
24:

Vee < {sink}
y « the sensor whoske_queried is the |« x |V||-th least one among all
Sensors
for each node: € V; except for the sinklo
if (hop_count(x,sink) < fx MAX_HOPCOUNT) A (z.be_queried <
y.be_queried) then
Vea — Vpe U {z}
end if
end for
Epc — ¢
for eache € E do
if both ofe’s two incident nodes belong gz then
Epq «— Epg U {e}
end if
end for
DAT(BG)
for each node: € Vp; except forthe sink that does not determine its parent
do
cp—¢
for each node € Vi do
if hop_count(sink,x) = hop_count(sink,y) + hop_count(zx,y) then
cp — cpU{y}
end if
end for
choose a nodg such thathop_count(p, ) = min{hop_count(y, z)|Vy €
cp}
x's parent— p
end for
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the Subtrees-Formatioprocedure is to determine the composed membets pf

(i.e., z’s correlated sensors). To begin with, we can see that for a subtree, the

node that has the highest_queried should be considered first (i.e, we should

find its correlated sensors). Thus, we define the leader of a subtree (denoted by

st_leader) as the node that has the high&sijueried among the sensors .

Initially, Vsr only containse andzx is the initial leader. Theny’s neighbors that

are non-backbone and not examined yet will be considered to be addédinto

The set of these nodes is calledndidatelist denoted byc/. Now we need to

decide whether a nodein ¢l is a correlated node of the subtree being examined.

First, y will check whethery.be_queried is larger thanst_leader.be_queried. If

so, theny may become the new leader and it should check whether all of the

members of the subtree are its correlated nodes. If the answer is affirmative,

will be added intoVsr andcl also will be updated by considerings neighbors.

On the other hand, if.be_queried isiless than or equal tet _leader.be_queried,

then the leader will check whethgiis its‘correlated nodes. Again, if the answer

is affirmative,y will be added intd/s=andclalso-will be updated by considering

y's neighbors. The same procedure will be performed on all nodes umtil

cl becomes empty. So faVs; is determined. An edge belongs i if both

of its two incident nodes are iisr; thus, Es7 is also determined. Again, we

run the DAT algorithm to construct a subtree frgft. The pseudo-code of the

Subtrees-Formatioprocedure is shown in Procedure 5.
Connecting-Subtrees-To-Backbo()e Because subtrees are formed separately,

some non-backbone nodes do not have parents yet aft&uibieees-Formation

procedure. From the example shown in Fig. 5.5(b), we can know that a subtree

formed by non-backbone nodes should connect to a backbone node. Recall that,

in the Backbone-Constructioprocedure, the backbone nodes that do not have

parents after running the DAT algorithm has a procedure to choose their parents

(from line 15 to line 24). The similar approach can be used to connect subtrees

to the backbone and th@onnecting-Subtrees-To-Backbgm®cedure is shown

in Procedure 6. We modify the original procedure slightly. Specially, we add a
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Procedure 5Subtrees-Formatiqid, )S)

1. Sort non-backbone nodes into a lisby be_queried in increasing order
2: for each node: in L do

3:  z.examined «— 0
4: end for
5. for each node: in L do
6: if z.examined = 0 then
7: Ver < {z}
8: st_leader «— x
9: cl —{yly € L Ny € Neighbor(x) A y.examined = 0}
10: while ¢l # ¢ do
11: Extract a sensay from ¢l
12: if y.be_queried > st_leader.be_queried then
13: if V2 € ST, Confidence(y, z) > min_con fidence then
14: st_leader <y
15: Vor «— Vor U {y}
16: cl — clU{zjz € LAz & Neighbor(y) A z.examined = 0}
17: y.examined=<= 1
18: end if
19: else ify.be_queriéd <= st leader.bé queried then
20: if Con fidence(stileader,y) >min_con fidence then
21: Vor « Vor U {y}
22: cl — clU{z|z € L A z € Neighbor(y) A z.examined = 0}
23: y.examined «— 1
24: end if
25: end if
26: end while
27: Esr — ¢
28: for eache € E do
29: if both ofe’s two incident nodes belong gy, then
30: Eg¢r «— Egp U {6}
31 end if
32: end for
33: DAT(ST)
34: endif
35: end for
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distance constraint in line 4, where a parametéd < v < 1) is used to limit

the distance between the root of the subtree and the root's parent. We can see that
when~ is small, the distance between the root and its parent will be large and
larger distance results in low query cost (because the parent can reply the queries
more early) but high update cost.

Procedure 6Connecting-Subtrees-To-Backb (@
1: for each non-backbone noddhat does not determine its pareiat

2. cp— ¢

3. for each node € Vzq do

4 if (hop_count(sink,z) = hop_count(sink,y) + hop_count(z,y)) A

(hop_count(sink,y) < v X hop_count(sink, x)) then

5: cp < cpU{y}

6: end if

7:  endfor

8: choose a nodg such thathop-count(p; x) = min{hop_count(y, x)|Vy €
cp}

9: x’s parent— p

10: end for

Correctness Finally, we show the correctness of the IQT algorithm. (A tree
is deviation-free if for all € V; the hop count of the tree path franto the sink
is equal to the minimum hop count betweeand the sink.)

Theorem 8. If GG is connected, the tree constructed by algorithm IQT is a con-

nected deviation-avoidance tree rooted at the sink.

5.3 Simulation Results

We have developed a simulator to demonstrate the efficiency of our proposed
imprecision-tolerant location management model. A sensing field with25ize

256 units is simulated, in which024 sensors are deployed randomly with uni-
form distribution. The sensor located at one of corners of sensing filed is selected
to be the sink.
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Table 5.1: Parameters used in the simulation for imprecision-tolerant location
management model.

Simulation Time 2592000 seconds
MAX_TOLERANT_RADIUS 30 units
MAX TOLERANT_INTERV AL 3600 seconds
Number of objects 128

The event rates of links are generated based on the modified city mobility
model presented in Chapter 3. Two query scenarios are simulated. In the first
scenario, each object is queried evenly. In the second scenario, some objects will
be queried frequently such that there are some query hotspots in the sensing field.
Besides, for each query, the valuetoferant_radius is selected randomly from
0to MAX TOLERANT_RADIUS with uniform distribution, and the value of
tolerant_interval is selected randomly frofto M AX _TOLERANT_INTERV AL
with uniform distribution. The, related parameters used in the simulation are
shown in Table 6.1.

To begin with, we consider the scenario in which each object is queried evenly.
In Fig. 5.6, we observe thesimpact of objects’ speeds. (The settings of para-
meters< «, 3, v, min_con fidence >rused in IQT1, 1QT2, IQT3, IQT4 are:
0.1,0.3,0.3,0.9 >, < 0.3,0.3,0.3,0.9 >, < 0.1,0.5,0.5,0.9 >, and
< 0.1,0.3,0.3,0.6 >.) Higher speed means higher update cost. To begin with, a
DAT tree optimized by minimizing the update cost is constructed. We can see that
when our proposed imprecision-tolerant query model is applied to the DAT tree
(i.e., the DAT-I scheme in Fig. 5.6), the saved cost is limited, because most queries
still need to be forwarded to the sensors that are tracking the queried objects. The
proposed IQT tree optimized by reducing the query cost incurred by imprecision-
tolerant queries can be used to solve this problem. Especially, when the query
cost dominates the communication cost (i.e., when objects’ speed is low), the IQT
trees can reduce the communication cost significantly. We can further find that
when the query rate increases from 0.4 to 0.2, the total costs of IQT trees almost
do not increase, because the IQT tree can make the query cost as low as possible.
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Figure 5.6: The impact of objects’ speeds.

On the other hand, when the query rate increases from 0.4 to 0.2, the total costs of
DAT trees are doubled. However, when the speed is high enough, the DAT trees
still outperform the IQT trees, because the DAT tree is optimized by minimizing
the update cost.

To get further insight into the performance. of 1QT, four IQT trees with dif-
ferent settings are compared with each other in Fig. 5.6. We can see that when
the query cost dominates the. total cost; the value: should be low, because
more sensors will be non-backbone.nedes that will be considered to reduce the
query cost. In addition, the value of should be low, because this will make
sensors’ parents close to the sink and reduce the length of query paths. Finally,
the min_con fidence should be high enough such that the queries can indeed be
responded early. On the contrary, when the update cost dominates the total cost,
the values ot, 7 and~ should be large, and the valuemin_con fidence should
be low such that the constructed tree will be like to the DAT one. Later, we will
investigate more settings under different query scenarios.

We also observe the impact of query rates in Fig. 5.7. We can see that the total
costs even are decreased slightly by using 1QT trees optimized by reducing the
guery cost. On the other hand, the total costs of DAT trees are increased when the
guery rate becomes high.

We find that by optimizing the query cost, the IQT tree also benefits from low
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Figure 5.8: Comparison of ratios of update cost to query cost.

query response time. In Fig. 5.8, we consider two cases in which the 1QT tree
and the DAT tree have similar performances in terms of total cost. We find that
the query cost of IQT trees can be reduced significantly. This implies low query
response time to which users are sensitive.

Now we consider a scenario in which some objects will be queried frequently
such that there are some query hotspots in the sensing field. Fig. 5.9(a) and
Fig. 5.10(a) show the results of the scenario in which each object is queried evenly.
(Note that the settings of parametetsy, 3, v, min_con fidence > used in IQT5
and IQT6 are< 0.5,1.0,0.3,0.9 >, and< 0.8,1.0,0.3,0.9 > respectively. Fur-
ther note that in Fig. 5.9, the query rate is set to 0.4 queries/second and in Fig. 5.10,
the objects’ speed is set to 0.4 units/second.) On the other hand, Fig. 5.9(b) and
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Figure 5.9: The impact of objects’ speeds under two different query scenarios
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Figure 5.10: The impact of query'rates under two different query scenarios.

Fig. 5.10(b) show the result of the scenario in which some objects are queried fre-

quently. In the first scenario, one may argue thahould be larger than or equal

to 3, because some backbone nodes will be useless (i.e., no non-backbone nodes

will connect to them) when is less thar3. However, in the second scenario, it is

useful to makey less thars. Sensors in the query hotspots are queried frequently.

Thus, it is better to select them to be non-backbone nodes and select other sen-

sors to be backbone node. Thus, even no non-backbone node connects to some

backbone nodes, sometimes it is still better to keep them as backbone nodes.
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5.4 Summary

By exploiting the nature of imprecision of sensor data, we propose an imprecision-
tolerant location management model for object tracking sensor networks. The
proposed model consists of imprecision-tolerant update and query mechanisms
that can be used to support imprecision-tolerant queries. By exploiting the feature
of the tree-based location management schemes, the proposed model can provide
multiple imprecision levels and ensure that the quest cost will be proportional to
the imprecision level. In addition, we develop a tree construction algorithm to
facilitate the proposed location management model, which can reduce the query
cost while minimize the increment of update cost. Finally, we have demonstrated

the efficiency of the proposed model by simulation.
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Chapter 6

A Link-layer Protocol for
Event-driven WSNSs

By simulation, we observe that packet loss may make the location information
incorrect in object tracking sensor networks. Thus, we also propose a link-layer
protocol to relieve the contention and collision.problems for event-driven WSNSs.
We solve these problems by jointly considering two subissues. One is exploiting
the spatial correlation of data reported by sensors in the event area, and the other

is designing a specific MAC protocol.

6.1 Preliminaries

6.1.1 Background and Motivations

Depending on the reporting behavior, wireless sensor networks (WSNs) can gen-
erally be classified into two categories: time-driven and event-driven. In a time-
driven WSN, sensors report their sensed data periodically to the sink. Such behav-
ior usually exhibits a uniquiinnelingeffect [1], where sensors near the sink may
suffer from higher contention. Some approaches have been developed to solve
this problem [1, 32]. On the contrary, in an event-driven WSN, sensors report
only when they detect events. In such behavior, the traffic near the sink may not
be heavy, but sensors in theent areanay suffer from higher contention, because
they are likely to detect, and thus intend to report, events simultaneously.
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Figure 6.1: Two examples of.event.reporting in an event-driven WSN.

Our goal is to solve the contention problem.of event reporting in event-driven
WSNs. The proposed approach joints two subissues. One is exploiting the spatial
correlation of data reported-by sensorsiinthe event area and the other is designing
a specific MAC protocol. Due te.the spatial correlation of sensor data, nearby
sensors typically have similar values. Thus, it may not be necessary for every
sensor to report its sensed data. Exploiting the spatial correlation of sensor data to
reduce redundant reports has been studied in [19, 21, 25, 31, 36]. For example, in
Fig. 6.1(a), the cloud area denotes the event area, and each sessssociated
with a correlation region, in which sensors’ readings are highly correlated with
x (the big circles denote the correlation regions of the gray sensors).We can see
that it is sufficient to have sensaisb, ¢, andd to report to cover the event area.

In addition, we can also note that the selection of reporting sensors needs to be
done carefully. For example, in Fig. 6.1(b), the five gray sensors are insufficient
to cover the whole event area.

The second subissue is to design a specific MAC protocol. After reporting
sensors are selected, we need to reduce the contention and collision among these
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reporting packets and to minimize the latency in transmitting these packets. Con-
tention and collision are likely because these sensors may be close to each other. In
addition, because packets in WSNSs are typically small, using the RTS/CTS mech-
anism to avoid the hidden terminal problem is not preferred. This also makes the
collision problem more severe. Besides, since these packets are likely to share
common paths when moving toward the sink, we would like topspeline effect

such that these packets are separated spatially (e.g., Fig. 6.1(a)), but move sequen-
tially (e.g., Fig. 6.1(b)), along these paths (we will elaborate more on this later).
Thus, designing a specific MAC protocol for event-driven WSNs is required.

In this dissertation, we propose a schedule-based approach to exploit the spa-
tial correlation of sensor data on the link layer. We do not modify the MAC pro-
tocol directly. On the contrary, we develop a scheme for making report decision
and a protocol for transmittingsreporting packets on the link layer. By doing so,
any CSMA-based protocol designed for WSNs could be adopted as the underly-
ing MAC protocol; thus, we ¢an simply leave some issues (e.g., power saving)
to the MAC protocol itself. \In our-approach, a-hode has two mo&s(Event-
Source) modendNES (Non-Event-Source) modaitially, each sensor is in the
NES mode. On detecting an event,"a‘sensor will enter the ES mode and adopt
a schedule-based protocol to transmit its packets. (The schedule-based protocol
can be regarded as a TDMA-based protocol, but strictly speaking it is built on
top of a CSMA-based protocol.) The rationale behind this is to avoid contention
and to form the pipeline effect as illustrated in Fig. 6.1(a). This schedule-based
protocol has some characters that makes it different from conventional TDMA-
based protocol. First, the TDMA part is based on very loose time synchronization
and is triggered by the appearance of events. Second, the slot assignment strategy
associated with the TDMA part takes the spatial correlation of sensor data into
consideration and thus allows less strict slot allocation than conventional TDMA
schemes. Interestingly, by intentionally allowing one-hop neighbors to share the
same time slot, the number of slots required per frame is significantly reduced.
Third, by enlarging the slot size on purpose, our scheme enforces packets, after
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leaving the event area, to form a pipeline in such a way that packets flows are like
streams, each of which is separated sufficiently in distance to avoid interference.
In addition, a scheme is devised to exploit the spatial correlation of sensor data.
Specifically, by exploiting TDMA's features, redundant reports can be further re-
duced with and without the aid of overhearing. On the other hand, because not all
sensors in the NES mode have to transmit packets, sensors in the NES mode will
adopt the original CSMA-based protocol to minimize the delay. Finally, we will
also discuss how to achieve energy efficiency by combining our protocol with the
LPL (Low Power Listening) technique proposed in the B-MAC [20].

6.1.2 Some Observations

In this section, we assume that CC-MAC [31] is adopted in an event-driven WSN
but the RTS/CTS mechanism is removed. In order to motivate our work, we make
some observations from the interference and the spatial correlation aspects.

From the interference aspect, we raise two scenarios to show that the hidden
terminal problem will be very. serious-in-an event-driven WSN. First, as shown
in Fig. 6.2(a), when two sensors.two-hopsapart detect an event at the same time,
their reports may collide even though their receivers are different. Second, even
for sensors not in the event area, collisions are inevitable as packets move toward
the sink. Fig. 6.2(b) shows an example with a report tree. Without the aid of
RTS/CTS, we can see thateport_1 could collide with Report_2 at sensorD,
Report_3 and Report_4 could collide at sensofy, and Report_5 could collide
with Report_6 at sensof. Thus, the interference is serious for sensors in the event
area, as well as those far away from the event area. We can see that designing a
specific MAC protocol for event-driven WSNs in which the RTS/CTS mechanism
is disabled is required.

From the spatial correlation aspect, we argue that using inter-distance between
sensors is insufficient to decide who shall report. First, a simple example is illus-
trated in Fig. 6.3(a), where sengpis near the boundary of sensds correlation
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Figure 6.2: The hidden terminal problem, whetg,, denotes the transmission
range of sensors.

region. With CC-MAC,y has to report no matter whether it overheassreport

or not. We can see that the overlap area’sfandy’s correlation regions is about
39% of one correlation region, whichris-high:. A more sophisticated example is
further shown in Fig. 6.3(b). Assuming-that senser$, ¢, andz have already
reported, we consider two-scenarios. Firsty lloes not overhear any of those
reports (we can see thatis not in any of the transmission regionsaf, ¢, and

x), theny will report. Howevery’s‘repart.does not contribute any additional area
to existing reports. Second, evengifcan overhear’s report (this is possible
when f forwardsz’s report), CC-MAC will enforcey to report, because the dis-
tance between andy is larger thank,.,... Therefore, a more sophisticated report
reduction scheme is required. In addition, because overhearing is opportunistic
sometimes, this sophisticated scheme should not highly rely on overhearing.

6.2 The Proposed Schedule-based Approach
6.2.1 Overview

We assume that a CSMA-based MAC protocol is adopted as the underlying MAC
protocol. In order to solve the contention problem and the hidden terminal prob-
lem in the event area, a schedule-based (or a TDMA-like) approach is proposed.
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Figure 6.3: The redundancy problem.

However, for those sensors not in the event.area, because not all sensors need to
help forward packets, assighing slots to those sensors that do not intend to transmit
any packet is unnecessary.and could’increase-delay. This means that the TDMA-
like approach may not be suitable for sensors not in the event area. Instead, they
will take a CSMA-based MAC approach.-Therefore, our scheme can be regarded
as a hybrid TDMA/CSMA protocol.

Each node has two modes: event-source (ES) mode and non-event-source
(NES) mode. Sensors in the ES mode will adopt a schedule-based approach to
transmit packets. Issues involved in the ES mode include: (i) when to enter the
ES mode, (ii) how to design a good slot assignment strategy, (iii) how to determine
proper slot size, (iv) what will lead to synchronization error and how to conduct
time synchronization, (v) how to exploit the spatial correlation of sensor data, and
(vi) when to leave the ES mode.

On the other hand, sensors in the NES mode will adopt the original CSMA-
based protocol to reduce report latency. An issue involved in this mode is how to
alleviate congestion when multiple events occur simultaneously.
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6.2.2 Operations in the ES Mode
Entering the ES Mode

As we mentioned above, a CSMA-based MAC protocol is adopted as the underly-
ing MAC protocol, but sensors in the ES mode will adopt a TDMA-like protocol.
To implement this TDMA-like protocol, we divide the time into slots at the link
layer. When the network was deployed, a slot assignment algorithm will be run so
that each sensor will be assigned a slot. Slots are numbered froMAX&LOT
and the first slot (i.e., slot 1) will be started on-the-fly in an event-driven manner.
Initially, each sensor is in the NES mode. When a sensor detects an event, it
will enter the ES mode by starting slot 1. Then, it will count slots until its slot
arrives. If its slot arrives and it intends to transmit a packet, it will perform the
access mechanisms defined in the underlying CSMA-based MAC protocol (such
as the backoff and CCA mechanisms).as usual to access the channel. If a sensor
cannot send its packet in its current slot, it will.wait for its slot in the next cycle
(note that it is also possible that the sensor will suspend its packet and not retry
again).

Slot Assignment Strategy

Conventional TDMA-based protocols will assign each node a slot different from
those of its one-hop and two-hop neighbors. We argue that when the spatial cor-
relation of sensor data is taken into consideration, such a strategy may not be
efficient, because not every sensor needs to report. It is easy to see that if a
node finally decides not to report, then its assigned slot is wasted. In addition,
our TDMA-like protocol is built on top of a CSMA-based protocol. Thus, with
proper backoff, assigning the same slot to neighboring nodes does not necessarily
lead to collision. Even, in case neighboring nodes share the same slot, the backoff
mechanism can be used to determine who should report and the losers may sus-
pend their reports due to the spatial correlation of sensor data when they overhear
the packet sent by the winner. Therefore, we even intentionally assign a slot used
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by a node’s one-hop neighbors to that node, but the node still should be assigned
a slot different from those used by its two-hop neighbors to avoid the hidden ter-
minal problem without the aid of RTS/CTS. Another advantage of our proposed
slot assignment strategy is that the valueMAXSLOTrequired can be reduced
significantly.

We develop a simple distributed slot assignment algorithm to complement this
slot assignment strategy. Note that the algorithm is run only once when sensors are
first deployed. We make some assumptions. First, the network topology is static
(otherwise, the slot assignment algorithm has to be run after topology change).
Second, each sensor has a unique ID. Third, each sensor can correctly discover all
its one-hop and two-hop neighbors. Finally, the number of two-hop neighbors of
a node is finite.

Each sensor will maintain_glot usage tabldo record the slots used by its
one-hop and two-hop neighbors. Each sensor. that does not own a slot will select
its slot in a distributed way. Thus, we-only describe the behavior of a sensor
First, z will send arequest to-all of its two-hop neighbors. Any two-hop neighbor
y of x receiving therequest will act as follows,

e If y does not own a slot yet andID < x.1D, theny will reply a grant to
x. Because does not own a slot yet, null slot information will be carried
on thegrant.

e Otherwisey will do nothing.

Oncex receivesgrants from all of its two-hop neighbors; will select a slot by

the following rule. To begin withy will check whether there exists a slot such that
this slot has been assignedats one-hop neighbors but has not been assigned to
2’s two-hop neighbors. If such slots existwill pick up the most-used one among
those slots. (Recall that we will intentionally assign a slot used by a node’s one-
hop neighbors to that node.) Otherwisewill select the smallest slot that has
not been used by its two-hop neighbors. (The reason is to minikW@€SLOT)
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After selecting its own sloty will send agrant with its selected slot to each of its
two-hop neighbors. Then, when another nadeceives such arant on which
a selected slot is carried from one of its two-hop neighbowgill modify its slot
usage table accordingly and check whether it has received all grants from all of its
two-hop neighbors.

Finally, when a sensor determines its slot, it will notify the sink so that the
sink can determine the value BTAXSLOT Then the sink will announc®AXS-
LOT to all sensors. Note that when no packet loss occurs, the proposed slot as-
signment algorithm guarantees that each node will recegivests from all of its
two-hop neighbors. However, when packet loss cannot be avoided, a sensor may
lossgrants and this will result in deadlock. In order to overcome the packet loss
problem, a sensor can actively ask its two-hop neighbors to resend;tiaits
(if allowed) when it waits passively for a'long period.

Theorem 9. The proposed:slot assignment algorithm ensures that each sensor
will select a slot different from those-used by its:two-hop neighbors.

Proof. For simplicity, we assume that packet loss will not occur. Because each
sensor has the same behavior, we ‘only consider a sensar, $&/assume that
hasn two-hop neighbors and the ID afis thek-th largest one among theset 1
sensors, whergé < £ < n + 1. We will show thatr can select a slot different
from those used by all of its two-hop neighbors no matter what the valkiesof

We consider two cases. In the first case, we assumel. In this case, when
x sends aequest to all of its two-hop neighbors, each o two-hop neighbors
will reply a grant to x, becauser has the largest ID. Thus; will choose slot 1
(i.e., the smallest slot) to use. It is easy to see that al'oftwo-hop neighbors
cannot select their slots because they cannotrgegrant. Thenx will send a
grant with the slot number selected hyto all of its two-hop neighbors; thus all
of x’s two-hop neighbors will not select slot 1 to use. Finally, we can see that the
grant sent byz will make somer’s two-hop neighbors whose IDs are the second
largest among their two-hop neighbors get all requiyedh¢s and start to select
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their own slots.

Now we consider the second case. In this case, we assume < n + 1. In
this case, when sends aequest to all of its two-hop neighbors, thoses two-
hop neighbors whose IDs are smaller thahD will send agrant to x. However,
thosex’s two-hop neighbors whose IDs are larger thahD will send agrant
to x only when they have determined their slots. Thusyill not use the same
slot with them. (Note that it is possible that two:d$ two-hop neighbors use the
same slot if these two nodes are not two-hop neighbors with each other.)xAfter
selects its sloty will send agrant with the slot number selected byto all of its
two-hop neighbors; thus thosés two-hop neighbors whose IDs are smaller than
x.1D will not select the slot the same with Finally, we can see that thg-ant
sent byxr may make some sensors get all requigednts and start to select their
own slots. O

To verify the efficiency-of the proposed slot assignment strategy, a simple
simulation is conducted4096 sensors are randomly deployed iRs6 x 256
field with uniform distribution.. As we can see in Fig. 6.4, when the transmission
range of senors increases, the‘valud#fxSLOTincreases from5 to 301 when
a node needs to have a slot different from those used by its one-hop and two-hop
neighbors. (Note that our slot assignment algorithm can be easily modified to
support this strategy.) However, the valueM®XSLOTonly increases from4
to 23 when a sensor only needs to differentiate from its two-hop neighbors. Note
that a lowetMAXSLOTmeans a lower report latency.

Slot Size

In conventional TDMA protocols, the slot size is usually set to the maximum one-
way message delay denoteddyNote that in our approacHh,should include the
maximum backoff delay, the time to perform CCA, and so on.) Below, we will
show that the hidden terminal problem could be alleviated by prolonging the slot
size. Before that, we define a teflaw.
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Figure 6.4: Comparison of slot assignment strategies.

Definition 1. Consider any sensar that is in the ES mode and located at the
event boundary. Whentransmits a packet to a neighboring sensor that is in the
NES mode, we sayflow is generated.

In the proposed approach| the slot size is séttal, wherel is a real number
larger than or equal to 1. Note théts usually set to be 1 in most TDMA-based
protocols. Fig. 6.5 shows an‘example of the advantage-ot. In Fig. 6.5,F and
F are in the ES mode and their assigned slots areli + 1 respectively. Suppose
that in some cyclel generates a flow in slatand ' generates a flow in slot
i + 1. WhenC receives the packet sent By it will run a CSMA-based protocol
immediately to forward the packet because it is in the NES mode. Fig. 6.5(b)
shows the case df = 1, where the transmission @f could easily collide with
the transmission of” at D due to the hidden terminal problem. However, as
Fig. 6.5(c) shows, if we set= 2, the transmission of' will occur within slotz,
thus avoiding the hidden terminal problem.

The purpose of prolonging the slot size is to separate flows in the time domain.
The advantage can be illustrated by Fig. 6.2, where we assum&itpatt_1,
Report_3, andReport_5 belong to flow 1, andieport_2, Report_4, andReport_6
belong to flow 2. We can see that the hidden terminal problem in the non-event

area can be avoided when these two flows are separated. Fig. 6.6 shows a more
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Figure 6.5: The impact of slot size beyond event areas.

general example, where the pipeline effect will be formed whern/tiselarge
enough. (As we can see that'in Fig. 6.6(a), wiiés small, packets will move
sequentially; on the other hand, in'Fig:6:6(b), wiies large, thepipeline effect

will be formed.) However, a larger slot size also incurs longer delay in the event
area. Therefore, determining a proper valué igfan important question. We will
investigate how to choose a progdry simulation.

Synchronization

Time synchronization should be done in a strict way in conventional TDMA-based
protocols. However, tight clock synchronization is not required in our protocol.
There are two major reasons. First, our TDMA-like protocol is built on top of a
CSMA-based MAC protocol. This means that the backoff scheme and the CCA
(Clear Channel Assessment) scheme can remove most of the collisions caused by
synchronization error. Second, we use longer slot size to separate flows. Thus, we
can tolerate a certain degree of synchronization error. For example, in Fig. 6.7(a),
where/ = 3 and two sensors do not synchronize with each other, we can see that
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Figure 6.6: The advantage of separating flows in time.

no matter which slots are used bByand B, there is no collision betweeA and
B.

In our scheme, sensors-are assumed to be synchronized by the occurrence of
events, which trigger them:to enter the ES maode. This scheme has two problems

that may lead to synchronization error.

e Sensors may not enter ES-Maode'simultaneously due to the event propaga-

tion delay.

e When multiple events occur close in time and space, some sensors may de-
tect multiple events. In our scheme, when a sensor in the ES mode detects
another event, we will allow it to continue its slot counting, instead of reset-
ting to slot 1. On the contrary, some sensor may only detect one event and
enter slot 1. This will also lead to synchronization error.

In order to solve these two problems, a simple adjustment scheme is proposed.
We assume that each sensor will count how many slots have passed after it entered
the ES mode. This counter is denotedsbyVhen a sensar transmits a packet in
the ES mode, the counters will be carried in the packet. Each ofs neighbor

sensors, say, that overhears the packet will react as follows. (Note that when
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y receives the packet, it can easily know the packet is transmitted ibythe
((z.s — 1)(modMAXSLOT) + 1)-th slot of a cycle.)

e If y.s > x.s, theny will do nothing.

o If y.s = x.s, theny will fine-tune itself as follows. Firsty will estimate the
start time ofz’s slot. If x is slower than itself, then nothing will be done.
Otherwisey will shorten its current slot to synchronize with An example
is shown in Fig. 6.7(b).

o If y.s < z.s, theny will estimate the start time of’s slot, adjust its current
slotto((z.s — 1)(modMAXSLOT) + 1), sety.s to z.s, and fine-tune itself.
An example is shown in Fig. 6.7(c).

With our adjustment scheme, when multiple events occur close in time and
space, the sensors that detect therearliest event will dominate the clock in the ES
mode. Although collisions eould occur during the adjusting, the backoff and CCA
mechanisms and the design of longer slot size-can alleviate the collision problem.

Finally, one should note that we cannot use the slot number assigned to sen-
sors to correct the synchronization error. For example, in Fig. 6.7(d), when
overhears the packet transmitted Byit will switch to slot 10. Later on, when
B overhears the packet transmitted @yit will switch back to slot 9. Thus, the

counters rather than the slot number should be used in the adjustment scheme.

Exploiting the Spatial Correlation of Sensor Data

So far, we mainly focus on the medium access issue. Next, we discuss how to
exploit the spatial correlation of sensor data. We assume that a correlation radius
R...» 1S given by applications and our goal is to minimize redundant reports un-
der distortion constraints. We propose a report reduction scheme that provides
two advantages. First, by exploiting TDMA's features, we adopt a probability to
reduce redundant reports without the aid of overhearing. Second, compared to
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CC-MAC, when a sensor overhears a packet, the area of the overlap of correlation
regions will be taken into consideration.

Our report reduction scheme consists of three steps. The first step is executed
when a sensor detects an event. The sensor will use a probability to determine
whether it should report or not (note that if the sensor decides not to report, it still
needs to enter the ES mode). Then, it will enter the second step, during which
it will try to overhear others’ packets before its slot arrives. With overhearing,
some reports can be further discarded in this step. Finally, when the sensor’s slot
arrives, it will enter the third step in which it will transmit one of the packets in its
buffer, if any. The details of this scheme are described as follows.

Step 1: Because overhearing is opportunistic or even impossible sometimes, it is
hard for a sensor to collect.enough. information to judge whether it should
report or not. Thus, a probability. IS adopted to help sensors to decide
whether they should-report or not. In.our scheme, when a sensor detects
an event, it will reportthis eventwith a probability’—*, where0 < o < 1
and S is the slot number assignedto that sensor. This means that a sensor
with larger slot number may tend to not report. To motivate this design,
let’s reconsider the example shown in Fig. 6.3(b), where we assume that
sensors, b, ¢, andx have already reported. When our TDMA-like protocol
is applied, this means thatmay have a larger slot number thajb, ¢, and
x do. Recall that we have shown thgs report is redundant. Based on
this observation, sensors with larger slot number should tend to not report,
because their neighbors may have reported. Note that this step can reduce
redundant reports without the aid of overhearing.

An important issue in the first phase is determining a prope&vhich needs

to consider many factors, for example, the ratid®f,.,. to R;,q,, network
density and so on. It can be observed that when the valu&.pf/ R an
becomes larger, the value afshould be decreased, because the probabil-
ity that a sensor suspends its report by overhearing becomes less. Besides,
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network density will also affect the optimal value @f When the network

is dense, the value MAXSLOTmay become larger. This will impact the
distribution of slot numbers assigned to sensors and then the value of
(Recall that the probability depends on the slot number assigned to the sen-
sor.) Therefore, we can know that there are many factors needed to be con-
sidered to determine the optimal valuecaf To simplify this problem, we
suggest that should be a tunable parameter. Given a distortion constraint,
when the sink receives many redundant reports, it can decrease the value of
a and announce the new valuew®to sensors. (Note that although the sink
cannot know the exact boundary of event area, it can compute the overlap
area of correlation regions to judge the redundancy level.) Besides, when

the distortion is the major concern, the sink can justset 1.

Step 2: No matter whether a sensor decides:to report or not, the sensor will exe-
cute the procedure in-the second step before its own slot arrives. To begin
with, we define theeporter of a packet. The reporter of a packet is the
sensor that first initiates this.report-packet by detecting an event. (Note that
the sender of a packet may net be the reporter of that packet.)

The procedure in the second step is as follows. A sensuitl try to over-
hear others’ packets. Wheroverhears a packet (whose reporter is denoted
by r,cceived),  Will check all of the packets in its buffer. We assume the
reporters of the packets iris buffer are denotes b{yry, o, ..., r}, where

k is the number of packets iris buffer. According to the distance between
Treceived @NAT;, Wherei = 1, ..., k, three cases are considered separately:

¢ If the distance is smaller thai.,,., then the packet reported bywill
be removed fromx’s buffer.

e From Fig. 6.3(a), we can observe that when the distance between two
reports is smaller tha2 x R..,.,, their correlation regions will over-
lap. Based on this observation, when the distance betwegh,.q
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andr; is larger than or equal t&.,,.. but smaller thar? x R.,.., ©
will determine whether the packet reported fyshould be removed
or not with a probability/ NT'C(d) /m(Reorr)? , Whered denotes the
distance between)..cci,.q andr; andI NT'C(d) is the intersection area
of the two circled centered &f..c;,.q andr;. INTC(d) can further be

represented by [ d]f;"” /(Reorr)? — 22d.

e Ifthe distance is larger than or equalts R, nothing will be done.

Three notes regarding the second step should be addressed. First, if the
packet overheard by is destinated ta: itself, the packet will be inserted

into z’s buffer. Second, the procedure in step 2 will also be run on the sen-
sors that are in the NES mode. More precisely, the procedure in step 2 will
be executed whenever a sensor'overhears a packet. Third, compared to CC-
MAC, we argue that our TDMA=based design can increase the opportunity
of overhearing inherently. \We can.see that before a sensor reports its data, it
has to wait until its own slot arrives.. During the waiting period, the sensor
could overhear a packet from other sensors and suspend its report.

Step 3: When the sensor’s slot arrives, it will enter the third step in which it will

transmit one of the packets in its buffer, if any.

Leaving the ES Mode

The final issue is how long a sensor should stay in the ES mode. Basically, a
sensor can return to the NES mode when it has reported or decided not to report the
detected event. However, it is possible that some of its one-hop/two-hop neighbors
need it to help forward their packets. If the sensor returns to the NES mode too
quickly, the possibility of interference and collision may increase when it helps
forward packets. Thus, we suggest that an ES mode sensor can return to the NES
mode when it does not have any packet in its buffer and does not receive/overhear
any packet during a cycle.
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6.2.3 Operations in the NES Mode

Sensors in the NES mode will adopt a CSMA-based protocol to reduce the report
latency. Recall that in the ES mode, we have tried to separate flows to proceed
in a pipeline manner. Thus, collision and congestion should have been avoided.
However, when multiple events occur close in time, flows that belong to different
events may collide with each other. In addition, a late flow may pursue an earlier
flow when congestion occurs. This makes the pipeline effect no longer available.
A way to solve this problem is to use a mechanism similar to that in Z-MAC
[24], that is, to adopt a TDMA-based scheme when a sensor experiences high
contention. However, control packets are required to achieve. In this dissertation,
motivated by [9], we propose an alternative simple scheme cafgtdand-fusion
that does not require any control packet. When a sensoy;,saythe NES mode
experiences congestion ([24]:has proposed some approaches to help a node deter-
mine whether it experiences congestionwill buffer the received packets and
wait an opportunity for fusion. Specifically, whenreceives a packet whose re-
porter isa, it will check whether there. exists a packet in its buffer whose reporter,
sayb, has a distance less thax' R g froma and|data(a) — data(b)| < 3, where
data(-) denotes the reading of a sensor. If such a packet exists, these two packets
will be fused into one report with a readirfga, b). Note that functionf and the
values of\ andj are application-specific. Such a fusion behavior will continue
for a while until the congestion problem is relieved. With the wait-and-fusion
scheme, we expect that the collision and congestion problems can be alleviated.

6.2.4 Extension for Achieving Energy Efficiency

Due to the power constraint of sensor nodes, energy efficiency is also an important
issue for WSNs. As mentioned above, most CSMA-based MAC protocols can be
adopted as the underlying MAC protocol. Below, we will use B-MAC [20] as
our choice and show how to utilize its LPL (Low Power Listening) technique to

achieve energy efficiency.
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In LPL, a sensor normally stays in the sleep state and wakes up periodically.
When a sensor wakes up, it will turn on its radio for a very short duration and
check for any activity. If a preamble is detected, the sensor will stay awake to
capture the incoming packet. Since nodes are not synchronized and thus wake up
at different times, the preambles of data packets should be longer than the check
interval of sleeping nodes to ensure that sleeping nodes will not miss incoming
packets. More details of LPL can be found in [20].

Below, we make some notes about the combination of our scheme with LPL
technique. First, both the TDMA-like protocol and the periodical wake-up scheme
need timers. These two timers should be run independently. Besides, the maxi-
mum one-way message delay (i#.should include the preamble length. Fig. 6.8
shows an example, whefe= 1. Second, recall that CCA needs to be run before
any transmission. If the CCA eutlier algorithm observes that the channel is not
clear, the sensor should switch to the receive mode instead of going back to sleep.
The reason is that our scheme depends on overhearing for inhibiting reporting and
increasing data fusion opportunity:

6.3 Simulation Results

We have developed a simulator to demonstrate the efficiency of our proposed ap-
proach. A sensing field with sizZ&%6 x 256 units wherel096 sensors are deployed
randomly with uniform distribution is simulated. The sensor with ID 0 is selected
to be the sink. In order to simulate the events arising in the network, a simple
event generation model is proposed. In this model, we use four parameters to
control the generation of events:

e MAX_INTERVAL: This parameter defines the maximum time interval be-
tween two events.

e WIDTH andMAX_LEVEL: In our model, an event area is represented by
multiple concentric circles. The number of concentric circles is determined
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by MAX_LEVEL. The first circle is the one with radi®@IDTH, the second
circle is the one with radiugd x WIDTH, and so on.

e PROPAGATIONDELAY: This parameter is used to simulate the event
propagation delay. When an event occurs, if sensors in-theannulus
of the event area detect this event,athen sensors in the+ 1-th annulus
will detect this event at; + PROPAGATION.DELAY.

Now, we describe the procedure of this event generation model. The first event
will be triggered at the beginning of simulation. As we mentioned above, an event
area is represented by multiple concentric circles. Therefore, a point in the send-
ing field will be selected randomly as the center of those circles. Sensors in the
first circle will detect this event first. Then, aftBROPAGATIONDELAY, sen-

sors in the second annulus will:also detect this event. This detection procedure
will continue until sensors in thBIAX_LEVEL -th annulus detect this event. Fi-
nally, when an every; arises initially, the next event (i.e., event ) will also be
triggered aftet, where0 < t.< MAX_INTERVAL andt is determined randomly

with uniform distribution.

Three metrics are used to evaluate the performance of medium access schemes.
We countthe number of packets transmittedsually, fewer packets means that
sensors can stay in sleep mode longer. Thus, less energy is consumed. We also
measurehe success rate of packet transmisgiefined as the ratio of the number
of packets received by the intended receiver to the number of packets transmit-
ted by the sender. Success rate can be used to evaluate the efficiency of a MAC
protocol. Higher success rate means less colliskwerage delays defined as
the average delay of report packets received by the sink. Besides, two metrics
are used to evaluate the performance of report reduction schebwe®rageis
defined asA o, reg union/Aecvent_areas WNEI€A oy req union denotes the area of the
field united by the correlation regions of reporters whose reports are received by
the sink, and4.....; «rcq IS the area of event area. Higher coverage means that the
sink has more accurate information regarding events. Finally, for an unit area in

105



Table 6.1: Parameters used in the simulation for our proposed link-layer protocol.

Buffer Size 10

The length of DATA 30 Bytes
Bit rate 250 kb/s
Simulation Time 1 hour
MAX_INTERVAL 10 seconds
WIDTH 10 units
PROPAGATIONDELAY | 5 milliseconds
MAX_LEVEL 5 (Default)

1 1.5 (Default)

the event area, if it is covered lysensors’ correlation regions, where> 1, then
we define that theedundancyof that unit area ign — 1) x 100%.

First, we compare our proposed schedule-based approach with a CSMA-based
protocol. Also, two report reduction schemes and two slot assignment schemes
will be applied separately. The detail'will be.described later. Then, we further
investigate the impact of two parameters.used in our proposed approach, éhat is,
and/. The related parameters used-inthe simulation are shown in Table 6.1.

6.3.1 Evaluation of SC-MAC

In this section, we compare our proposed schedule-based approach called SC-
MAC (a MAC protocol with atial Gorrelation consideration) with several schemes.
In the CSMA scheme, a CSMA-based MAC protocol without any spatial correla-
tion consideration is adopted. In the CSMA-SSC (a CShised protocol with
Simple Satial Gorrelation consideration) scheme, a CSMA-based MAC protocol
with a simple report reduction scheme is adopted. This report reduction scheme
works as that used in CC-MAC does. More precisely, when a nodey;,sawer-

hears a packet whose reporteryisz will judge whether the distance between
itself andy is smaller than correlation radius or not. If the answer is affirma-
tive, = will suspend its report. Otherwise, will continue its report. Thus, the
CSMA-SSC scheme can be viewed as the simplified version of CC-MAC. In the
SCMAC-SCC-TSA scheme, the aforementioned report reduction scheme and our
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proposed schedule-based approach will be adopted; howeveratigidnal Jot
Assignment strategy (i.e., a node needs to own a slot different from those used by
all of its one-hop and two-hop neighbors) is used. In the SCMAC-TSA scheme,
our proposed schedule-based approach with the traditional slot assignment strat-
egy is adopted. In the SCMAC-SSC, our proposed schedule-based approach with
the simple report reduction scheme is adopted. Finally, one should note that the
RTS/CTS mechanism is not used in all schemes. In addition, the acknowledge-
ment scheme is also disabled in the simulation.

Fig. 6.9 shows the results of the case WhBrg., > Riran (Reorr 1S 15 UNILS,
Ryiran 1S 10 units, anda is set to be 0.5 for the SCMAC-TSA and the SCMAC
schemes). To begin with, we focus on the CSMA and CSMA-SSC schemes. Al-
though they have the best performance in terms of average delay, they have the
worst performance in terms of coverage, especially when the event area becomes
larger. The reason is high:contention and collision that make the sink receive
fewer reports than expected. This can-be further verified by Fig. 6.9(b). We can
see that the success rate islowwhen.the CSMA and the CSMA-SSC schemes are
adopted. Then, we focus on'the SCMAC-SCC-TSA and SCMAC-SCC schemes.
In Fig. 6.9(a), we can see that both of them will transmit many packets in the
network but they do not provide better coverage than the SCMAC scheme does.
The reason can be explained by Fig. 6.9(d). We can see that redundant reports
are too much when these two schemes are applied. This means that the simple re-
port reduction scheme does not perform well enough. In addition, because many
reports have to be sent, these two schemes also do not perform well in terms of
average delay. Finally, we focus on the SCMAC-TSA and SCMAC schemes. In
fact, it is hard to compare these two schemes fairly. Although both of them set
to be0.5, different slot assignment strategies may result in different performances.
However, it is not hard to see that the SCMAC scheme has better performance in
terms of average delay (note that we can see that the SCMAC scheme transmits
more packets than the SCMAC-TSA scheme does). This demonstrates that the
proposed slot assignment strategy can reduce the report latency significantly (this
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is because the value ®IAXSLOTis reduced). Briefly, our proposed SCMAC
scheme has the best performance. It provides high success rate, high coverage,
low redundancy, reasonable average delay, and reasonable amount of packets.

Fig. 6.10 shows the results of the case whRrg, < Riran (Reorr 1S 5 UNILS,
Ryran 1S 10 units, anda is set to be 1.0 for the SCMAC-TSA and the SCMAC
schemes). In this case, we observe that the coverage will be low avfgeset to
be smaller than 1.0. Thus,is set to be 1.0. We can see that the SCMAC scheme
is still the best one. In addition, we can further note that the advantage of our
proposed slot assignment strategy is revealed thoroughly in this experiment. In
Fig. 6.10(c), we can see that our proposed slot assignment strategy can reduce the
average delay. This also influences the coverage. In Fig. 6.10(d), we can see that
the coverage will become lower when the event area becomes larger. One reason is
buffer overflow (note that we assume that'each sensor’s sending buffer is limited
such that for a sensor, if therejare 100 many:packets to be sent simultaneously,
some of packets will be discarded), because more report packets have to be sent
when the event area becomes larger.-Long delay will worsen the buffer overflow
problem, because packets will. be queued in a sensor for a long time. Thus, the
performance of the SCMAC and SCMAC-SSC schemes is better than that of the
SCMAC-SSC-TSA and SCMAC-TSA schemes.

To conclude, the advantages of our proposed SCMAC scheme can be summa-
rized as follows:

e Our proposed medium access scheme can relieve the collision problem
without the aid of RTS/CTS mechanism. This can be verified by high suc-
cess rate.

e Our proposed report reduction scheme can reduce more redundant reports

than the simple report reduction scheme does.

e Our proposed slot assignment strategy can shorten the average delay. This
also relieves the buffer overflow problem.
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6.3.2 Evaluation of Parameters in SC-MAC

In this section, we further explore the impact of two parameters used in our pro-
posed approach, that is,and/. To begin with,« is inspected. From the previous
subsection, we can draw two conclusions regardingirst, the optimal value of
depends on the slot distribution. For example, when the traditional slot assignment
strategy is adopted, the slot numbers owned by nodes may be large. Thus, higher
« should be used to achieve reasonable coverage. Second Ryher: Riyan, o

should be set to bein order to achieve reasonable coverage, becausenainly

used in the situation where redundant reports cannot be removed by overhearing.

In this section, we further investigate the impact of the rati&gf., to R;ax
on the value ofv. Fig. 6.11 shows the results wheke /N2 denotes thaR,.,,.. is
N1 units andR;,..,, is N2 units. Note that the set of values®fs {0.01, 0.25, 0.50,0.75, 1.00}.
From Fig. 6.11(a), we can see that when therati®gf, to R;,.,, increases from
1.0 t0 2.0, we can use lowetripha to achieve enough coverage. The reason is that
whenR.,,./ R, becomeslarger, the probability that two sensors that are within
each other’s correlation region and cannot overhear each other’s packets directly
becomes larger. Thus, the valuese$hould:-be small in order to reduce redundant
packets. Then, we can note that when,../ Rs..., is fixed, largerR;,.,, can lead
to better coverage, because more sensors can overhear the reports. This also im-
plies that a smaller value ef should be used when the network density is large.
However, from Fig. 6.11(b), we observe that when ihg,, becomes larger, the
redundancy is high even a small valuecofs used. Thus, we suggest that..,,
should not be too large and we can increase the value tof achieve required
coverage.

Next, ¢ is investigated. In Fig. 6.12(a), we can see that prolonging the slot size
can increase the success rate, because the hidden terminal problem is alleviated.
Although the increment is small, the improvement will be large when the amount
of packets transmitted becomes large. In addition, in Fig. 6.12(b), it can be seen

that prolonging the slot size can also enhance coverage, because more packets
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are transmitted to the sink successfully. However, in Fig. 6.12, we can see that
prolonging the slot size will be penalized by long delay. Therefore, determining a
proper value of may depend on application requirement.

When the network load is high, prolonging the slot size may not be a good
idea, because long delay will worsen the buffer overflow problem. As we can see
in Fig. 6.13, although the success rate becomes higher Wwihecomes larger,
the coverage becomes lower, because many packets are dropped due to buffer
overflow. Thus, the network load also should be taken into consideration when
we need to decide the proper value/of

6.4 Summary

We have shown how to exploit the spatial correlation of sensor data on the link
layer for event-driven WSNs: A hybrid- TDMA/CSMA protocol is proposed. The
protocol has three features that makes.it very-efficient. First, the TDMA part is
triggered only when sensars detect an event.” By doing so, the protocol enjoys
the benefits of collision-free transmission of TDMA and low latency transmission
of CSMA. Second, the slot assignment strategy associated with the TDMA part
takes the spatial correlation of sensor data into consideration. By intentionally
allowing one-hop neighbors to share the same time slot, the number of slots re-
qguired per frame is significantly reduced. Thus, the transmission latency is also
reduced. Third, by enlarging the slot size on purpose, an interesting effect of
pipeline transmission is formed, and thus the interference problem in the non-
event area is alleviated. In addition, redundant reports are significantly reduced
by our proposed report reduction scheme. We also discuss how to combine our
scheme with LPL to achieve energy efficiency. Simulation results have demon-
strated the efficiency of our scheme. We believe that our approach can be built on
top of most CSMA-based MAC protocols.
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Figure 6.12: The impact of, v

value of« is 0.3.
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Chapter 7

Conclusions and Future Directions

Object tracking is an important application of WSNs and location management
is one of the key steps involved in object tracking. In this dissertation, we pro-
pose several tree-based location management schemes to reduce the communica-
tion cost. We also address the contention and collision problems for event-driven
WSNSs (e.g., object tracking sensor networks).- The significant results with future
works are summarized as follows.

In Chapter 3, we have developed several efficient ways to construct a logical
object tracking tree for a single-sink-sensor network. We have shown how to or-
ganize sensor nodes as a logical tree so as to facilitate in-network data processing
and to reduce the total communication cost incurred by object tracking. For the
location update part, our work can be viewed as the extension of the work in [14],
and we enhance the work by exploiting the physical structure of the sensor net-
work and the concept of deviation avoidance. In addition, we also consider the
query operation and formulate the query cost of an object tracking tree given the
query rates of sensors. In particular, our approach tries to strike a balance be-
tween the update cost and query cost. Performance analyses are presented with
respect to factors such as moving rates and query rates. Simulation results show
that by exploiting the deviation-avoidance trees, algorithms DAT and Z-DAT are
able to reduce the update cost. By adjusting the deviation-avoidance trees, algo-
rithm QCR is able to significantly reduce the total cost when the aggregate query
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rates is high, thus leading to efficient object tracking solutions.

Chapter 4 further explores the possibility of having multiple sinks in the net-
work. One advantage of having multiple sinks is to reduce the response time of
queries. In addition, using multiple sinks can also relieve the traffic congestion
problem associated with a single-sink system. We extend the single-sink loca-
tion management scheme proposed in Chapter 3 by constructing multiple trees
to support multi-sink WSNs. The corresponding update cost is formulated for-
mally. Based on the formulation, we have presented two distributed algorithms to
construct multiple trees. We have verifies the benefits of a multi-sink WSN from
different aspects, including the total (update plus query) cost, the number of sinks,
query response time, query success rate, and load balance factor.

By exploiting the inherent property of imprecision of sensor data, Chapter 5
presents an imprecision-tolerant location management model for object tracking
sensor networks. The propased model consists of imprecision-tolerant update and
guery mechanisms that can be used to support imprecision-tolerant queries. By
exploiting the feature of the tree-based location management schemes, the pro-
posed model can provide multiple imprecision levels and ensure that the quest cost
will be proportional to the imprecision‘level. In addition, we develop a tree con-
struction algorithm to facilitate the proposed location management model, which
can reduce the query cost while minimize the increment of update cost.

By simulation, we observe that packet loss may make the location informa-
tion incorrect in object tracking sensor networks. Thus, a protocol is proposed
in Chapter 6 to support the location management schemes from the link layer.
We have shown how to exploit the spatial correlation of sensor data on the link
layer for event-driven WSNs. A hybrid TDMA/CSMA protocol is proposed. The
protocol has three features that makes it very efficient. First, the TDMA part is
triggered only when sensors detect an event. By doing so, the protocol enjoys the
benefits of collision-free transmission of TDMA and low latency transmission of
CSMA. Second, the slot assignment strategy associated with the TDMA part takes
the spatial correlation of sensor data into consideration. By intentionally allow-
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ing one-hop neighbors to share the same time slot, the number of slots required
per frame is significantly reduced. Thus, the transmission latency is also reduced.
Third, by enlarging the slot size on purpose, an interesting effect of pipeline trans-

mission is formed, and thus the interference problem in the non-event area is al-
leviated. In addition, redundant reports are significantly reduced by our proposed
report reduction scheme. We also discuss how to combine our scheme with LPL
to achieve energy efficiency. Simulation results have demonstrated the efficiency
of our scheme.

The future work includes two aspects. First, due to the fault-prone property
of sensor nodes, developing a fault-tolerant mechanism for the tree-based loca-
tion management is required. We will investigate a virtual-tree system, in which
an implicit tree is still used. However, because no explicit tree exists, the fault-
tolerant can be done easily. Second, we have proposed a link-layer protocol to
support event-driven sensar networks. in this-dissertation. In the future, we will
further develop a link-layer protocol to support hybrid time-driven/event-driven

sensor networks.
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