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摘 要       

 
無線通訊與感測技術的快速發展使得無線感測網路成為一門新興的科技，無線感測網路的應用

也因此被廣泛地討論。在無線感測網路中物件追蹤是一個重要的議題，它包含了許多的應用，

例如軍事上入侵者的偵測、野生動物棲息地的監控等。物件追蹤包含了幾個重要的步驟，例如

事件的偵測、目標物的辨識、位置的估算等，在無線感測網路中，當物件的位置被估算出來之

後，為了能讓使用者去查詢物件的位置，或者為了能讓感測到物件的感測器做回報，一個位置

管理機制是需要的。本論文的主題即討論無線感測網路上位置管理相關的通訊協定。我們所提

出的位置管理機制利用了無線感測網路的網路內資料處理的能力，以分散式的方式去執行物件

位置的更新與查詢。我們更考量了在多資料匯集端的網路下的位置管理機制，在這樣的環境下

我們假設使用者可在任一個地方發出位置的查詢。而由於感測資料的不精確是感測網路先天上

特有的特性，我們也考慮了在使用者可容忍一些誤差的網路環境下，位置管理機制該如何達成

的問題。而不管在哪一種網路環境下，位置管理機制的目的都是為了要降低位置更新與位置查

詢所產生的通訊成本。此外，我們觀察到網路底層封包的遺失與碰撞可能導致物件追蹤網路中

產生不正確的位置資訊，而物件追蹤網路是一種以事件驅動為主的網路，因此我們也針對以事

件驅動為主的感測網路提出了一個鏈結層通訊協定來降低封包碰撞的問題。 
 
物件追蹤通常包含了兩個基本的操作：位置更新與位置查詢。一般而言，位置更新是在當一個

物件從一個感測區域移動到另一個感測區域時發生，而位置查詢則是當使用者有需要知道物件

的位置而發生查詢。無線感測網路處理位置更新與查詢的方法有很多，一個處理更新與查詢最

簡單的做法是將使用者的查詢送給網路上的每一個感測節點，而偵測到物件的感測器在收到查

詢後就會回覆物件的位置給資料匯集端，我們可以發現在這個方法中，感測器不需要主動地做

位置的更新，然而，很顯然這個方法在網路規模很大或者是查詢頻率很高時會非常地沒有效

率，因為使用者的查詢必須被廣播到整個網路上。第二種處理更新與查詢的方法則是要求感測

器偵測到物件時就必須主動地將物件的新位置傳送給資料匯集端，如此資料匯集端就隨時有物

件的位置資訊，因此資料匯集端本身就可以馬上回覆使用者的查詢，而不再需要將查詢送到感

測網路上，然而這方法在物件移動相當頻繁時會產生許多的位置更新訊息，因此我們可以很明

顯地看出上述兩個方法是各有利弊。在這篇論文中，我們首先針對單一資料匯集端的網路環境

提出一個樹狀的位置管理機制，在建樹的過程中，我們考量了網路實際上的拓樸對通訊代價產

生的影響。建樹的程序主要分成兩個階段，在第一個階段我們主要目的是降低位置更新所產生

的通訊代價，我們利用了避免偏向(deviation-avoidance)與高移動頻率優先(high-weight-first)這
個特性去降低通訊代價。而在第二個階段，我們則是以第一階段所產生的樹再加上位置查詢的
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考量而去做調整。 
 
接著，我們則考慮了一個多資料匯集端的感測網路。擁有多重資料匯集端的一個好處是可降低

位置查詢的回應時間，除此之外也能降低資料匯集端附近網路流量擁塞的問題，亦即可達到較

好的負載平衡。為了要支援多資料匯集端的環境，我們可考慮將單一資料匯集端的方法做延

申，也就是每個資料匯集端都建構一個樹，然而這也就意謂著更新多個樹是需要的，因此如何

去降低更新多個樹所產生的通訊代價便是我們要去解決的問題。在這篇論文中，為了解決此問

題，我們利用了資料匯集的概念提出了有效率的位置更新機制。有了這個機制，我們發現在多

重資料匯集端的環境下，位置更新的通訊代價只會增加少許。此外，我們也根據前述的更新機

制推導出更新代價的公式，並以此公式設計出兩個分散式的建樹演算法。 
 
在物件移動的環境中要維持物件正確的位置資訊幾乎是不可能的，原因除了定位技術本身就不

是很準確，物件的移動與資料傳送的延遲也都使得查詢者得到的位置資訊並不精確。然而幸運

的是在物件追蹤的應用中，不精確的位置資訊通常是能夠被容忍的，例如生物科學家為了要追

蹤某動物時，生物學家可能只需要知道大概的移動方向即可而不需要知道正確的位置，除此之

外，當科學家只是為了要觀察動物的日常作息時，幾個小時前的位置資訊對科學家們仍是有用

的資訊。因此我們也提出了一個位置管理機制去支援能夠容忍不精確位置資訊的物件追蹤感測

網路。我們認為這個位置管理機制應該要能達成兩個目標，第一，位置查詢的通訊代價應該跟

精確程度成正比，第二，多精確程度的支援。我們觀察到樹狀架構的位置管理機制可以很容易

地達成這兩個目標，因此我們也提出了一個建樹的演算法。 
 
藉著實驗的模擬我們觀察到封包的碰撞與遺失會導致使用者得到不正確的物件位置資訊，因此

我們也提出了一個鏈結層協定來減輕碰撞的問題。無線感測網路一般可分成兩類，一是事件驅

動另一則是時間驅動。在事件驅動的感測網路中，感測器會在偵測到事件時做回報的動作，而

這樣的回報可能造成事件發生區域的感測器遭受到較高的傳輸競爭。在這篇論文中，我們結合

了兩個議題來解決這個問題，一是利用感測資料的空間相關性，另一則是設計一個新的媒介存

取協定。我們提出了一個結合 TDMA(Time Division Multiple Access)與 CSMA(Carrier Sense 
Multiple Access)的鏈結層協定，它與傳統以 TDMA 為基礎的協定有幾個不同的特色。第一，

在 TDMA 的部份我們只需要較寬鬆的時間同步且是經由事件的驅動而啟動 TDMA，而 CSMA
則在非事件發生區域被採用以達到低傳送延遲。第二，時槽分配策略考量了感測資料的空間相

關性，我們發現藉著允許一個感測器可使用和其鄰居相同的時槽，可使得整個網路所需要的時

槽數大幅地降低。第三，藉著拉長一個時槽的長度，我們可在封包離開事件區域後能像水流一

樣依序地前進，每個封包會相隔一定的距離以避免干擾。除此之外，利用 TDMA 的特性及感

測資料的空間相關性，我們也提出了一個降低回報量的機制。而為了達到省電的目的，我們也

討論如何將 LPL (Low Power Listening)的技術結合到我們的方法。 
 
 
 
 
 
 
 
 
 
 
關鍵詞：無線感測網路、物件追蹤、網路內資料處理、資料匯集、行動計算、位置管理、媒

介存取控制、空間相關性、TDMA、CSMA 
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ABSTRACT 
 

The rapid progress of wireless communication and embedded micro-sensing MEMS 
technologies has made wireless sensor networks (WSNs) possible. Applications of WSNs have been 
studied widely. Object tracking is one of the important issues of WSNs, which has applications in 
such as military intrusion detection and habitat monitoring. The key steps involved in object tracking 
include event detection, target classification, and location estimation. In a WSN, when the locations 
of objects are successfully determined, a location management scheme for reporting objects' 
locations and disseminating users' queries is required. The main theme of this dissertation is location 
management. The proposed location management schemes explore the in-network data processing 
capability of WSNs by executing distributed location updates and queries inside the network. We 
further consider the multi-sink system, in which a user can issue queries from anywhere in a WSN. 
Since inaccuracy of sensing data is inherent for WSNs, we also consider the scenarios where users 
can tolerate a certain degree of imprecision in their query results. The goal of location management 
schemes is to reduce the communication cost. Besides, we observe that packet collision can lead to 
incorrect location information. Thus, we also propose a link-layer protocol to relieve the collision 
problem for event-driven WSNs. 

 
Object tracking typically involves two basic operations: update and query. In general, updates 

of an object's location are initiated when the object moves from one sensor to another. A query is 
invoked each time when there is a need to find the location of an interested object. Location updates 
and queries may be done in various ways. A naive way for delivering a query is to flood the whole 
network. The sensor whose sensing range contains the queried object will reply to the query. Clearly, 
this approach is inefficient because a considerable amount of energy will be consumed when the 
network scale is large or when the query rate is high. Alternatively, if all location information is 
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stored at a specific sensor (e.g., the sink), no flooding is needed. But whenever a movement is 
detected, update messages have to be sent. One drawback is that when objects move frequently, 
abundant update messages will be generated. The cost is not justified when the query rate is low. 
Clearly, these are tradeoffs. In this dissertation, we first propose a tree-based location management 
scheme for single-sink WSNs. We develop several tree structures for in-network object tracking 
which take the physical topology of the sensor network into consideration. The optimization process 
has two stages. The first stage tries to reduce the location update cost based on a deviation-avoidance 
principle and a highest-weight-first principle. The second stage further adjusts the tree obtained in 
the first stage to reduce the query cost. 

 
We then explore the possibility of having multiple sinks in the network. One advantage of 

having multiple sinks is to reduce the response time of queries. In addition, using multiple sinks can 
also relieve the traffic congestion problem associated with a single-sink system (i.e., using multiple 
sinks can achieve load balance more easily). In order to support location management in a multi-sink 
WSN, we can extend the tree structure used in the single-sink system by constructing a logical tree 
for each sink. However, this implies that updating multiple trees is required when a movement event 
is detected. It is desirable to further reduce the update cost when multiple trees coexist in the 
network. In this dissertation, by exploring the concept of data aggregation, we propose an algorithm 
to efficiently update multiple trees. With proper design, we show that the update cost increases 
slightly when the number of trees (i.e., the number of sinks) increases. Based on the foregoing 
update algorithm, we formulate the update cost that gives us hints to develop efficient 
tree-construction algorithms. Two distributed multi-tree construction algorithms are also presented. 

 
In moving object environments, maintaining the exact locations of objects anytime is almost 

infeasible. Not only the positioning results are error-prone, but also the data transfer delay and object 
mobility make the locations of objects inaccurate. Fortunately, imprecision is tolerable in many 
object tracking applications. For example, when life scientists intend to track an animal, it may be 
sufficient to know its moving direction rather than its exact location. In addition, the location 
information recorded several hours ago, instead of at the current time, may be still available for the 
life scientists to understand the animal's daily life. Therefore, we also we propose an in-network 
location management scheme to support imprecision-tolerant queries for object tracking sensor 
networks. We argue that an imprecision-tolerant location management solution should achieve two 
desirable goals. First, the query cost should be proportional to the precision level. Second, multiple 
precision levels should be provided. We observe that the tree-based location management schemes 
could achieve these two goals inherently. Thus, we also propose a tree construction algorithm for 
imprecision-tolerant location management model. 

 
By simulation, we observe that packet collision can lead to incorrect location information in 

object tracking sensor networks. Thus, we also propose a link-layer protocol to relieve the collision 
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problem for event-driven WSNs. Wireless sensor networks (WSNs) can generally be classified into 
two categories: time-driven and event-driven. In an event-driven WSN, sensors report their readings 
only when they detect events. In such behavior, sensors in the event area may suffer from higher 
contention. In this dissertation, we solve this problem by jointly considering two subissues. One is 
exploiting the spatial correlation of data reported by sensors in the event area and the other is 
designing a specific MAC protocol. We propose a novel hybrid TDMA/CSMA protocol with the 
following interesting features that differentiate itself from conventional TDMA-based protocols. 
First, the TDMA part is based on very loose time synchronization and is triggered by the appearance 
of events. On the other hand, the CSMA part is adopted in the non-event area to achieve low latency 
transmission. Second, the slot assignment strategy associated with the TDMA part takes the spatial 
correlation of sensor data into consideration and thus allows less strict slot allocation than 
conventional TDMA schemes. Interestingly, by intentionally allowing one-hop neighbors to share 
the same time slot, the number of slots required per frame is significantly reduced. Third, by 
enlarging the slot size on purpose, our scheme enforces packets, after leaving the event area, to form 
a pipeline in such a way that packets flow like streams, each of which is separated sufficiently in 
distance to avoid interference. In addition, by exploiting TDMA's features and the spatial correlation 
of sensor data, we show how to reduce redundant reports. We also discuss how to combine our 
protocol with the LPL (Low Power Listening) technique to achieve energy efficiency. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Keywords: wireless sensor network, object tracking, in-network processing, data aggregation, 
mobile computing, location management, imprecision-tolerant, MAC, TDMA, CSMA, spatial 
correlation. 
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Chapter 1

Introduction

The emerging wireless sensor network (WSN) technology may greatly facilitate

human life. A WSN may consist of many inexpensive wireless nodes, each ca-

pable of collecting, processing, and storing environmental information, and com-

municating with other nodes. A lot of research efforts have been dedicated to

WSNs, including deign of physical and medium access layers [26, 35] and rout-

ing and transport protocols [10, 13]. Applications of WSNs have been studied in

[2, 6, 17].

Object tracking is an important application of WSNs (e.g., military intrusion

detection and habitat monitoring). The key steps involved in tracking include

event detection, target classification, and location estimation [3, 5, 15, 18]. In a

WSN, when the locations of objects are successfully determined, a location man-

agement scheme for reporting objects’ locations and disseminating users’ queries

is required [14, 16]. The main theme of this dissertation is location management.

In particular, we explore the in-network data processing capability of WSNs by

executing distributed location updates and queries inside the network. Updates of

an object’s location are initiated when the object moves from one sensor to an-

other. A query is invoked each time when there is a need to find the location of

an interested object. Location updates and queries may be done in various ways.

A naive way for delivering a query is to flood the whole network. The sensor

whose sensing range contains the queried object will reply to the query. Clearly,
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this approach is inefficient and not scalable because a considerable amount of en-

ergy will be consumed when the network scale is large or when the query rate is

high. Alternatively, if all location information is stored at a specific sensor (e.g.,

the sink), no flooding is needed. But whenever a movement is detected, update

packets have to be sent to the sink. Thus, when objects move frequently, abundant

update packets will be generated. The cost is not justified when the query rate is

low. Clearly, these are tradeoffs.

1.1 Location Management for Single-Sink WSNs

In [14], aDrain-And-Balance(DAB) tree structure is proposed to address the issue

of location management. As far as we know, this is the first in-network object

tracking approach in sensor networks where query messages are not required to

be flooded and update messages are not always transmitted to the sink. However,

[14] has two drawbacks. First, a DAB tree is a logical tree not reflecting the

physical structure of the sensor network; hence, an edge may consist of multiple

communication hops and a high communication cost may be incurred. Second,

the construction of the DAB tree does not take the query cost into consideration.

Therefore, the result may not be efficient in some cases.

In this dissertation, we propose a tree-based location management scheme for

single-sink WSNs. We develop several tree structures for in-network object track-

ing which take the physical topology of the sensor network into consideration.

The optimization process has two stages. The first stage aims at reducing the up-

date cost, while the second stage aims at further reducing the query cost. For the

first stage, several principles, namely deviation-avoidance and highest-weight-first

ones, are pointed out to construct an object tracking tree to reduce the communi-

cation cost of location update. Two tree construction algorithms are proposed:

Deviation-Avoidance Tree(DAT) and Zone-based Deviation-Avoidance Tree(Z-

DAT). The latter approach tries to divide the sensing area into square-like zones,

and recursively combine these zones into a tree. Our simulation results indicate
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that the Z-DAT approach is very suitable for regularly deployed sensor networks.

For the second stage, we develop aQuery Cost Reduction(QCR) algorithm to

adjust the object tracking tree obtained in the first stage to further reduce the to-

tal cost. The way we model this problem allows us to analytically formulate the

update and query costs of the solution based on several parameters of the given

problem, such as rates that objects cross the boundaries between sensors and rates

that sensors are queried. We have also conducted extensive simulations to evaluate

the proposed solutions. The results do validate our observations.

1.2 Location Management for Multi-Sink WSNs

We further explore the possibility of having multiple sinks in the network. One

advantage of having multiple sinks is to reduce the response time of queries. In

addition, using multiple sinks can also relieve the traffic congestion problem as-

sociated with a single-sink system (i.e., using multiple sinks can achieve load

balance more easily). In order to support location management in a multi-sink

sensor network, we can extend the tree structure used in the single-sink system by

constructing a logical tree for each sink. However, this implies that updating mul-

tiple trees is required when a movement event is detected. Assuming that there

arem sinks coexisting in the network, if each tree is updated independently, the

update cost will become approximatelym times. It is desirable to further reduce

the update cost when multiple trees coexist in the network. In this dissertation, by

exploring the concept of data aggregation, we propose an algorithm to efficiently

update multiple trees. With proper design, we show that the update cost increases

slightly when the number of trees (i.e., the number of sinks) increases. Based on

the foregoing update algorithm, we formulate the update cost that gives us hints

to develop efficient tree-construction algorithms. Two distributed multi-tree con-

struction algorithms are presented. Experimental results show that the increased

update cost with multiple trees can be compensated by lower query cost and the

query cost also depends onm, the number of sinks. This allows us to further
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investigate how to choose the value ofm under different scenarios.

1.3 Imprecision-tolerant Location Management Model

Since inaccuracy, or even error, of sensing data is inherent for WSNs, applica-

tions of WSNs usually have to tolerate some degree of imprecision. This property

has been exploited in the design of network protocols for WSNs. For example,

precision-constrained data aggregation is considered in [28], and a storage sys-

tem that supports drill-down queries with different precision levels is proposed in

[11]. Similarly, in moving object environments, maintaining the exact locations

of objects anytime is almost infeasible. Not only the positioning results are error-

prone, but also the data transfer delay and object mobility make the locations of

objects inaccurate. Fortunately, imprecision is tolerable in many object tracking

applications. For example, when life scientists intend to track an animal, it may be

sufficient to know its moving direction rather than its exact location. In addition,

the location information recorded several hours ago, instead of at the current time,

may be still available for the life scientists to understand the animal’s daily life.

In this dissertation, we propose an in-network location management scheme

to support imprecision-tolerant queries for object tracking sensor networks. We

intend to develop a location management model that can achieve two goals. First,

multiple imprecision levels should be provided. Second, the query cost should be

proportional to the imprecision level. To achieve these two goals, we propose a

tree-based imprecision-tolerant location management model. To begin with, we

present the update and query mechanisms that can support imprecision-tolerant

queries. We then propose a tree construction algorithm to reduce the query cost

while minimize the increment of update cost.
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1.4 A Link-layer Protocol for Event-driven WSNs

By simulation, we observe that packet loss may make the location information

incorrect in object tracking sensor networks. Thus, we also propose a link-layer

protocol to relieve the contention and collision problems for event-driven WSNs.

We solve these problems by jointly considering two subissues. One is exploiting

the spatial correlation of data reported by sensors in the event area, and the other

is designing a specific MAC protocol. We propose a novel hybrid TDMA/CSMA

protocol with the following interesting features that differentiate itself from con-

ventional TDMA-based protocols. First, the TDMA part is based on very loose

time synchronization and is triggered by the appearance of events. On the other

hand, the CSMA part is adopted in the non-event area to achieve low latency

transmission. Second, the slot assignment strategy associated with the TDMA

part takes the spatial correlation of sensor data into consideration and thus allows

less strict slot allocation than conventional TDMA schemes. Interestingly, by in-

tentionally allowing one-hop neighbors to share the same time slot, the number of

slots required per frame is significantly reduced. Third, by enlarging the slot size

on purpose, our scheme enforces packets, after leaving the event area, to form a

pipeline in such a way that packets flow like streams, each of which is separated

sufficiently in distance to avoid interference. In addition, by exploiting TDMA’s

features and the spatial correlation of sensor data, we show how to reduce redun-

dant reports. We also discuss how to combine our protocol with the LPL (Low

Power Listening) technique to achieve energy efficiency.

1.5 Organization of This Dissertation

This dissertation is organized as follows. Related works are surveyed in Chap-

ter 2. In Chapter 3, we present the proposed location management scheme for

single-sink WSNs. In Chapter 4, we further explore the possibility of having mul-

tiple sinks. Based on the tree-based location management schemes, we propose an
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imprecision-tolerant location management model in Chapter 5. In Chapter 6, we

propose a link layer protocol to solve the packet loss problem that may make loca-

tion information incorrect. Finally, we conclude our research results and propose

some future directions in Chapter 7.
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Chapter 2

Related Works

In this chapter, we first review some papers addressing the object tracking issues

in wireless sensor networks. Because the main theme of this dissertation is loca-

tion management. In Sec. 2.2, we discuss some existing location managements

schemes proposed for WSNs. As we mentioned above, packet loss may make

location information incorrect. Packet loss is usually caused by contention and

collision. We propose a link layer protocol to relieve the contention and collision

problems. Because MAC (Medium Access Control) protocols are usually used

to solve the contention and collision problems, we review some medium access

schemes developed for wireless sensor networks in Sec. 2.3.

2.1 Object Tracking Using Wireless Sensor Networks

A significant amount of research effort has been elaborated upon issues of object

tracking problems. The authors in [34] explored a localized prediction approach

for power efficient object tracking by putting unnecessary sensors in sleep mode.

Techniques for cooperative tracking by multiple sensors have been addressed in

[3, 7, 18, 37]. In [7], a dynamic clustering architecture that exploits signal strength

observed by sensors is proposed to identify the set of sensors to track an object.

In [37], a convoy treeis proposed for object tracking using data aggregation to

reduce energy consumption.
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2.2 Location Management in Object Tracking Sen-
sor Networks

In [14], a Drain-And-Balance(DAB) tree structure is proposed to address the

location management issue. As far as we know, this is the first in-network object

tracking approach in sensor networks where query messages are not required to

be flooded and update messages are not always transmitted to the sink. However,

[14] has two drawbacks. First, a DAB tree is a logical tree not reflecting the

physical structure of the sensor network; hence, an edge may consist of multiple

communication hops and a high communication cost may be incurred. Second,

the construction of the DAB tree does not take the query cost into consideration.

Therefore, the result may not be efficient in some cases.

A location management scheme supporting imprecision-tolerant queries for

object tracking sensor networks has been studied in [33]. The location information

of an object is stored in a centric storage node and a local storage node. When a

user intends to know the location of an object, the query will be forwarded from

the querying node to the centric storage node of that object. If the precision level

is satisfactory, the centric storage node will reply to this query. Otherwise, the

query will be forwarded to the local storage node, which has more precise location

information of that object. This scheme has two major drawbacks. First, when the

querying node is very close to the local storage node of the queried object, the

query will still be forwarded to the centric storage node, which may be far from

the querying node. Second, only two precision levels are provided.

2.3 MAC Protocols for Wireless Sensor Networks

A significant amount of research effort has been dedicated to the design of MAC

protocols for WSNs [1, 20, 22, 24, 27, 29, 30, 35]. The energy efficiency issue has

been studied in S-MAC [35] and T-MAC [29] by synchronizing sensors on a com-

mon wakeup/sleep schedule. In order to eliminate the synchronization overhead,
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B-MAC [20] adopts a preamble sampling technique. Some hybrid TDMA/CSMA

MAC protocols have been proposed recently. In Z-MAC [24], some sensors will

adopt a CSMA-based MAC protocol and those suffering from high contention will

adopt a TDMA-based MAC protocol. By doing so, Z-MAC enjoys the benefits of

low latency of CSMA and high channel utilization of TDMA. Funneling-MAC [1]

is also a hybrid TDMA/CSMA MAC protocol that aims to solve the funneling ef-

fect near the sink. However, these protocols do not address the spatial correlation

of sensor data, and thus the contention problem, in event-driven WSNs.

Exploiting the spatial correlation of sensor data on the MAC layer has been

discussed in [31], where the relation between the spatial positions of sensors and

the event estimation reliability is investigated. Specifically, a distortion function

is derived and a termcorrelation radius(Rcorr) is introduced. Then, CC-MAC

(spatial Correlation-based Collaborative Medium Access Control) is proposed.

CC-MAC consists of two components: E-MAC (Event MAC) and N-MAC (Net-

work MAC). E-MAC aims to filter out correlated reporting (i.e., determine which

sensors can report). On the other hand, N-MAC is mainly used for sensors not

in the event area to forward reporting packets. However, CC-MAC has the fol-

lowing drawbacks: (i) E-MAC is a pure contention-based protocol. Although

some sensors may withdraw from reporting, those sensors that decide to report

will still cause a lot of contention, because they will report simultaneously. (ii)

The RTS/CTS mechanism is adopted, which causes high overheads when packet

sizes are small. (iii) In CC-MAC, when a sensorx overhears a packet reported by

another sensory, x will judge whether the distance between itself andy is smaller

thanRcorr. If so, x will suspend its report. As to be shown later, this simple

condition cannot completely avoid redundant reporting. (iv) The report reduction

technique proposed in CC-MAC highly depends on overhearing; thus, redundancy

may still exist when when one misses overhearing.
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Chapter 3

In-network Location Management
for the Single-sink System

In this chapter, we present our proposed location management scheme designed

for the single-sink sensor networks. We propose a tree structure for in-network

object tracking in a sensor network. The location update part of our solution can be

viewed as an extension of [14]. In particular, we take the physical topology of the

sensor network into consideration. We take a two-stage approach. The first stage

aims at reducing the update cost, while the second stage aims at further reducing

the query cost. For the first stage, several principles, namely deviation-avoidance

and highest-weight-first ones, are pointed out to construct an object tracking tree

to reduce the communication cost of location update. Two solutions are proposed:

Deviation-Avoidance Tree(DAT) and Zone-based Deviation-Avoidance Tree(Z-

DAT). The latter approach tries to divide the sensing area into square-like zones,

and recursively combine these zones into a tree. Our simulation results indicate

that the Z-DAT approach is very suitable for regularly deployed sensor networks.

For the second stage, we develop aQuery Cost Reduction(QCR) algorithm to

adjust the object tracking tree obtained in the first stage to further reduce the total

cost. The way we model this problem allows us to analytically formulate the

update and query costs of the solution based on several parameters of the given

problem, such as rates that objects cross the boundaries between sensors and rates

that sensors are queried. We have also conducted extensive simulations to evaluate
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Figure 3.1: (a) The Voronoi graph of a sensor network. (b) The graphG corre-
sponding to the sensor network in (a).

the proposed solutions. The results do validate our observations.

3.1 Preliminaries

We consider a wireless sensor network deployed in a field for the purpose of object

tracking. Sensors’ locations are already known at a special node, calledsink,

which serves as the gateway of the sensor network to the outside world. We adopt

a simplenearest-sensormodel, which only requires the sensor that receives the

strongest signal from the object to report to the sink (this can be achieved by [7]).

Therefore, the sensing field can be partitioned into a Voronoi graph [4], as depicted

in Fig. 3.1(a), such that every point in a polygon is closer to its corresponding

sensor in that polygon than to any other. In practice, a sensor under our model may

represent the clusterhead of a cluster of reduced-function sensors. In this work,

however, we are only interested in the reporting behavior of these clusterheads.

Our goal is to propose a data aggregation model for object tracking. We as-

sume that whenever an object arrives at or departs from the sensing range (poly-

gon) of a sensor, adetection eventwill be reported (note that this update message
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are not always forwarded to the sink, as will be elaborated later). Two sensors are

calledneighborsif their sensing ranges share a common boundary on the Voronoi

graph; otherwise, they arenon-neighbors. Multiple objects may be tracked con-

currently in the network, and we assume that from mobility statistics, it is possi-

ble to collect the event rate between each pair of neighboring sensors to represent

the frequency of objects travelling from one sensor to another. For example, in

Fig. 3.1(a), the arrival and departure rates between sensors are shown on the edges

of the Vonoroi graph. Note that before the statistics is done, the initial weights can

be the same value for all edges. In addition, the communication range of sensors is

assumed to be large enough so that neighboring sensors (in terms of their sensing

ranges) can communicate with each other directly. Thus, the network topology

can be regarded as an undirected weighted graphG = (VG, EG) with VG rep-

resenting sensors andEG representing links between neighboring sensors. The

weight of each link(a, b) ∈ EG, denoted bywG(a, b), is the sum of event rates

from a to b andb to a. This is because both arrival and departure events will be

reported in our scheme. In fact,G is a Delaunay triangulation of the network [4].

Fig. 3.1(b) shows the corresponding Delaunay triangulation of the sensor network

in Fig. 3.1(a). Note that the number labelled on each edge represents its weight.

In light of the storage in sensors, the sensor network is able to be viewed as

a distributed database. We will exploit the possibility of conducting in-network

data aggregation for object tracking in a sensor network. Similar to the approach

in [14], a logical weighted treeT will be constructed fromG. Note thatT may

not be a spanning tree in which each node’s parent is its neighbor. For example,

Fig. 3.2(a) shows an object tracking treeT constructed from the networkG in

Fig. 3.1(b), where the dotted lines are the forwarding path of a query for Car1.

Movement events of objects are reported based on the following rules. Each node

a in T will maintain adetected listDLa = (L0, L1, . . . , Lk) such thatL0 is the set

of objects currently inside the coverage of sensora itself, andLi, i = 1, · · · , k,

is the set of objects currently inside the coverage of any sensor who is in the

subtree rooted at thei-th child of sensora, wherek is the number of children ofa.
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Figure 3.2: (a) An object tracking treeT . (b) The events generated as Car1 moves
from sensorK to G and Car2 moves fromH to C.

When an objecto moves from the sensing range ofa to that ofb ((a, b) ∈ EG), a

departure eventdep(o, a, b) and an arrival eventarv(o, b, a) will be reported bya

andb, respectively, alone the treeT . On receiving such an event, a sensorx takes

the following actions:

• If the event isdep(o, a, b), x will removeo from the properLi in DLx such

that sensora belongs to thei-th subtree ofx in T . If x = a, o will be

removed fromL0 in DLx. Thenx checks whether sensorb belongs to the

subtree rooted atx in T or not. If not, the eventdep(o, a, b) is forwarded to

the parent node ofx in T .

• If the event isarv(o, b, a), x will add o to the properLi in DLx such that

sensorb belongs to thei-th subtree ofx in T . If x = b, o will be added to

L0 in DLx. Thenx checks whether sensora belongs to the subtree rooted at

x in T or not. If not, the eventarv(o, b, a) is forwarded to the parent node

of x in T .

The above data aggregation model guarantees that, disregarding transmission

delays, the data structureDLi always maintains the objects under the coverage of
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Table 3.1: Summary of notations used in Chapter 3.
distG(u, v) The minimum hop count betweenu andv in G.
distT (u, v) The sum ofwT s of edges on the path connectingu andv in T .
wG(u, v) The event rate betweenu andv.
wT (u, v) The weight of edge(u, v) in T . (= distG(u, v)).
lca(u, v) The lowest common ancestor ofu andv.

p(v) The parent ofv in T .
Subtree(v) Members of the subtree rooted atv.

root(v) The root of the temporary subtree containingv during
the construction ofT .

q(v) The query rate ofv.
neighbors(v) Neighbors ofv.
children(v) Children ofv.

any descendant of sensori in T . Therefore, searching the location of an object

can be done efficiently inT ; a query is only required to be forwarded to a proper

subtree and no flooding is needed. For example, Fig. 3.2(a) shows the forwarding

path of a query for Car1 inT . Fig. 3.2(b) shows the reporting events as Car1 and

Car2 move and the forwarding path of a query for the new location of Car1.

Our goal is to construct an object tracking treeT = (VT , ET ) that incurs

the lowest communication cost given a sensor networkG = (VG, EG) and the

corresponding event rates and query rates, whereVT = VG andET consists of

|VT | − 1 edges with the sink as the root. Intuitively,T is a logical tree constructed

from G, in which each edge(u, v) ∈ T is one of the shortest paths connecting

sensorsu andv in G. Therefore, the weight of each edge(u, v) in T , denoted by

wT (u, v), is modelled by the minimum hop count betweenu andv in G. The cost

function can be formulated asC(T ) = U(T ) + Q(T ), whereU(T ) denotes the

update cost andQ(T ) is the query cost.

Table 4.1 summaries the notations used in this chapter.
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3.2 Tree Construction Algorithms

This section presents our algorithms to construct efficient object tracking trees.

In Section 3.2.1, we develop algorithm DAT targeted at reducing the update cost.

Then, in Section 3.2.2, based on the concept of divide-and-conquer, we devise

algorithm Z-DAT to further reduce the update cost. In Section 3.2.3, algorithm

QCR is developed to adjust the tree obtained by algorithm DAT/Z-DAT to further

reduce the total cost.

3.2.1 Algorithm DAT (Deviation-Avoidance Tree)

Object tracking typically involves two basic operations: update and query. Based

on the aggregation model in Section 3.1, updates will be initiated when an object

o moves from sensora to sensorb. It can be seen that both the departure event

dep(o, a, b) and the arrival eventarv(o, b, a) will be forwarded to the root of the

minimum subtree containing botha andb. Therefore, the update costU(T ) of a

treeT can be formulated by counting the average number of messages transmitted

in the network per unit time:

U(T ) =
∑

(u,v)∈EG

wG(u, v)× (distT (u, lca(u, v)) + distT (v, lca(u, v))), (3.1)

wherelca(u, v) denotes the root of the minimum subtree inT that includes bothu

andv (from now on, we will calllca(u, v) the lowest common ancestor ofu and

v), anddistT (x, y) is the sum of weights of the edges on the path connectingx

andy in T . For example in Fig. 3.2(a),distT (F, K) = wT (F, I) + wT (I, J) +

wT (J,K) = 3. In order to identify which factors affecting the value ofU(T ), we

show thatU(T ) also can be formulated in a different way as follows.

Theorem 1. Given any logical treeT of the sensor networkG, we have

U(T ) =
∑

(p(v),v)∈ET


wT (p(v), v)×

∑
(x,y)∈EG∧x∈Subtree(v)

∧y /∈Subtree(v)

wG(x, y)


 , (3.2)
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whereSubtree(v) is the subtree ofT rooted at nodev andp(v) is the parent ofv.

Proof. This can be proved by observing which events will be reported along an

edge inT . Given (p(v), v) ∈ ET , for any (x, y) ∈ EG wherex ∈ Subtree(v)

and y /∈ Subtree(v), since the lowest common ancestor ofx and y must not

in Subtree(v), any event generated on(x, y) will be transmitted fromv to p(v).

Otherwise, no message will be transmitted fromv to p(v). This leads to the theo-

rem.

From Eq. 3.1 and Eq. 3.2, we make three observations aboutU(T ):

• Eq. 3.1 contains the factordistT (u, lca(u, v)). Its minimal value is

distG(u, lca(u, v)), which denotes the minimum hop count between sensor

u and sensorlca(u, v) in G. Therefore, we would expect thatdistT (u, sink)

= distG(u, sink) for eachu ∈ VG; otherwise, we say thatu deviates from

its shortest path to the sink. IfdistT (u, sink) = distG(u, sink) for each

u ∈ VG, we say that treeT is a deviation-avoidancetree. Fig. 3.3 shows

four possible object tracking trees for the graphG in Fig. 3.1(b). The one

in Fig. 3.3(b) is not a deviation-avoidance tree sincedistT (E, A) = 3 >

distG(E, A) = 2. The other three are deviation-avoidance trees.

• Eq. 3.2 contains the factorwT (u, v). Its minimal value is 1 whenu 6= v.

Consequently, it is desirable that each sensor’s parent is one of its neigh-

bors. Only the tree in Fig. 3.3(d) satisfies this criterion. By selecting

neighboring sensors as parents, the average value ofdistT (u, lca(u, v)) +

distT (v, lca(u, v)) in Eq. 3.1 can be minimized. For example, the aver-

age values ofdistT (u, lca(u, v))+ distT (v, lca(u, v)) are 3.591, 2.864, and

2.227 for the trees in Fig. 3.3(a), 3.3(c), and 3.3(d), respectively.

• In Eq. 3.1, the weightwG(u, v) will be multiplied bydistT (u, lca(u, v)) +

distT (v, lca(u, v)). For two edges(u, v) and(u′, v′) ∈ EG such thatwG(u, v)
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Figure 3.3: Four possible location tracking trees for the graph in Fig. 3.1(b).

> wG(u′, v′), it is desirable thatdistT (u, lca(u, v)) + distT (v, lca(u, v)) <

distT (u′, lca(u′, v′)) + distT (v′, lca(u′, v′)). Combining this observation

with the second observation, an edge(u, v) with a higherwG(u, v) should

be included intoT as early as possible andp(v) should be set tou if

distG(u, sink) < distG(v, sink), and vice versa. We call this thehighest-

weight-firstprinciple.

Based on above observations, we develop our algorithm DAT. Initially, DAT

treats each node as a singleton subtree. Then we will gradually include more

links to connect these subtrees together. In the end, all subtrees will be connected

into one treeT . The detailed algorithm is shown in Algorithm 1, where notation

root(x) represents the root of the temporary subtree that containsx. To begin

with, EG is sorted into a listL in a decreasing order of links’ weights. Based
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on the third observation, algorithm DAT will examine edges inL one by one for

possibly being included into treeT . For each edge(u, v) in L being examined by

algorithm DAT,(u, v) will be included intoT only if u andv are currently located

in different subtrees. Also,(u, v) will be included intoT only if at least one ofu

andv is currently the root of its temporary subtree and the other is on a shortest

path inG from the former node to the sink (these conditions are reflected by the

if statements in lines 5 and 7). An edge inG passing these checks will then be

included intoT . Note that without these conditions, deviations may occur. It can

be seen thatT is always a subgraph ofG andwT (u, v) = 1 for all (u, v) ∈ ET .

For example, Fig. 3.4(a) is a snapshot of an execution of DAT. The solid lines are

those edges that have been included intoT . When(F, G) is examined by DAT, it

will not be included intoT , because neitherF nor G is the root of its temporary

subtree. Another snapshot is shown in Fig. 3.4(b). When(B, D) is examined, it

will not be included intoT . AlthoughD is the root of its temporary subtree,B is

not on the shortest path fromD to A, i.e.,distG(D,A) 6= distG(B,A)+1. (A,D)

will be then examined after(B, D). (A,D) can be included intoT , becauseD is

the root of its temporary subtree andA is on the shortest path fromD to A.

Algorithm 1 DAT(G)
1: Let T = (VT , ET ) such thatVT = VG andET = φ
2: SortEG into a listL in a decreasing order of their event rates.
3: for each(u, v) ∈ EG in L do
4: if (root(u) 6= root(v)) then
5: if (u = root(u)) ∧ (distG(u, sink) = distG(v, sink) + 1) then
6: Let ET = ET ∪ (u, v) and let the root of the new subtree beroot(v).
7: else if(v = root(v)) ∧ (distG(v, sink) = distG(u, sink) + 1) then
8: Let ET = ET ∪ (u, v) and let the root of the new subtree beroot(u).
9: end if

10: end if
11: end for

Theorem 2. If G is connected, the treeT constructed by algorithm DAT is a

connected deviation-avoidance tree rooted at the sink.
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Figure 3.4: Snapshots of an execution of DAT.

Proof. First, we show thatT is connected. Each sensor is the root of a singleton

subtree in the beginning and we will prove that only one senor will be the root

in the ending. SinceG is connected, when a sensorx 6= sink is the root of

a subtree (i.e.,x = root(x)), it always can find a neighboring sensory such

thatdistG(x, sink) = distG(y, sink) + 1. It is clear thatroot(y) 6= x, because

distG(root(y), sink) ≤ distG(y, sink). Hence, edge(x, y) can be included into

T , andx will not be the root anymore. By repeating such arguments,T must be

connected and rooted at the sink. Second, we show thatT is a deviation-avoidance

tree. This can be derived from two observations. First, when an edge(u, v) is

included intoT , DAT will choosev as the child ofu if distG(v, sink) is larger

thandistG(u, sink), and vice versa. Therefore, if the path from the sink to sensor

u is one of the shortest paths, the path from the sink to sensorv is also one of the

shortest paths. Second, assumingdistG(v, sink) = distG(u, sink) + 1, DAT will

include(v, u) only whenv itself is the root of a subtree. This guarantees that all

descendant nodes inSubtree(v) will not deviate from their shortest paths to the

sink. Hence, the theorem follows.
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3.2.2 Algorithm Z-DAT (Zone-based Deviation-Avoidance Tree)

The Z-DAT is derived based on the following locality concept. Assume thatu

is v’s parent inT . According to Eq. 3.2, for any edge(x, y) ∈ EG such that

x ∈ Subtree(v) andy /∈ Subtree(v), arrival/departure events betweenx andy

will cause a message to be transmitted on(p(v), v), thus increasing the value of
∑

(x,y)∈EG∧x∈Subtree(v)∧y/∈Subtree(v) wG(x, y). Therefore, the perimeter that bounds

the sensing area of sensors in eachSubtree(v) will impact the update costU(T ).

A longer perimeter would imply more events crossing the boundary. For example,

in the three subtrees in Fig. 3.5, although all subtrees have the same number of

sensors, the perimeter of the subtree in Fig. 3.5(a) is smaller than that in 3.5(b),

which is in turn less than that in 3.5(c). In geometry, it is clear that a circle has the

shortest perimeter to cover the same area as compared with other shapes. Circle-

like shapes, however, are difficult to be used in an iterative tree construction. As a

result, Z-DAT will be developed based on square-like zones.

(a)
 (b)


v


v


(c)


v


p
(
v
)


p
(
v
)

p
(
v
)


Figure 3.5: Possible structures of subtrees with nine sensors.

Z-DAT is derived based on the deviation-avoidance principle and the above

locality concept. The algorithm buildsT in an iterative manner based on two

parameters,α andδ, whereα is a power of2 andδ is a positive integer. To begin

with, Z-DAT first uses(α − 1) horizontal lines to divide the sensing field intoα

strips. For each horizontal line between two strips, we are allowed to further move

it up and down within a distance no more thanδ units. This gives2δ + 1 possible

locations of each horizontal line. For each location of the horizontal line, we can
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calculate the total event rate that objects may move across the line. Then we pick

the line with the lowest total event rate as its final location. After all horizontal

lines are determined, we then further partition the sensing field intoα2 regions by

using(α− 1) vertical lines. Following the adjustment as above, each vertical line

is also allowed to move left and right within a distance no more thanδ units and

the one with the lowest total event rate is selected as its final location.

After the above steps are completed, the sensing field is divided intoα2 square-

like zones. First, we run DAT on the sensors in each zone. This will result in one

or multiple subtrees in each zone. Next, we will merge subtrees in the aboveα2

zones recursively as follows. First, we combine these zones together intoα
2
× α

2

larger zones, such that each larger zone contains2 × 2 neighboring zones. Then

we merge subtrees in these2× 2 zones by sorting all inter-zone edges (i.e., edges

connecting these2×2 zones) according to their event rates into a listL and feeding

L to steps3 ∼ 11 of the original DAT algorithm. Second, we further combine the

above larger zones together intoα
4
× α

4
even larger zones, such that each even

larger zone contains2×2 neighboring larger zones. This process is repeated until

one single tree is obtained. The algorithm is summarized in Algorithm 2. An

illustrated example is shown in Fig. 3.6. In the first iteration, we divide the field

intoα×α zones and adjust their boundaries according toδ as shown in Fig. 3.6(a).

In the second iteration, each2 × 2 neighboring zones is combined into a larger

zone as shown in Fig. 3.6(b).

Algorithm 2 Z-DAT(G,α, δ)
1: Divide the network intoα× α zones based on parametersα andδ.
2: Run DAT on the sensors in each zone.
3: i ← 1
4: while α

2i 6= 0 do
5: The network is divided intoα

2i × α
2i zones.

6: Run DAT on each zone to merge its subtrees.
7: i ← i + 1
8: end while

To summarize, Z-DAT is similar to DAT except that it examines links ofEG
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Figure 3.6: An example of the Z-DAT algorithm withα = 4.

in a different order. By partitioning the sensing field into zones, each subtree in

T is likely to cover a square-like region, thus avoiding the problem pointed out

in Fig. 3.5. Also, by using the parameterδ to fine-tune the lowest-level zones,

Z-DAT tends to avoid high-weight links becoming inter-zone edges. In fact, this

is a consequence of the the highest-weight-first design principle.

Theorem 3. If G is connected, the treeT constructed by algorithm Z-DAT is a

connected deviation-avoidance tree rooted at the sink.

Proof. Z-DAT will examine all links ofG, but in a different order from DAT.

However, the proof of Theorem 5 is independent of the order of the links being

examined for being included intoT . Therefore, the same proof is still applicable

here.

3.2.3 Algorithm QCR (Query Cost Reduction)

The above DAT and Z-DAT only try to reduce the update cost. The query cost is

not taken into account. QCR is designed to reduce the total update and query cost

by adjusting the object tracking tree obtained by DAT/Z-DAT. To begin with, we

define the query rateq(v) of each sensorv as the average number of queries that

refer to objects within the sensing range ofv per unit time in statistics.
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Given a treeT , we first derive its query costQ(T ). Suppose that an objectx is

within the sensing range ofv. Whenx is queried, ifv is a non-leaf node, the query

message is required to be forwarded tov sincep(v) only indicates thatx is in the

subtree rooted atv. On the other hand, ifv is a leaf node, the query message only

has to be forwarded top(v), because sensorp(v) knows that the object is currently

monitored byv. The following equation givesQ(T ) by taking into account the

number of hops that query requests and query replies have to travel onT .

Q(T ) = 2×




∑
v∈VT∧

v /∈leaf node

q(v)× distT (v, sink) +
∑

v∈VT∧
v∈leaf node

q(v)× distT (p(v), sink)


 ,(3.3)

We make two observations onQ(T ). First, becausedistT (p(v), sink) is al-

ways smaller thandistT (v, sink), Eq. 3.3 indicates that placing a node as a leaf

can save the query cost instead of placing it as a non-leaf. For example, when

query rates are extremely high, it is desirable that every node will become a leaf

node andT will become a star-like graph. Second, the second term in Eq. 3.3

implies that the value ofdistT (p(v), sink) should be made as small as possible.

Thus, we should choose a node closer to the sink asv’s parent (however, this is at

the expense of the update cost).

Based on the above observations, QCR tries to adjust the treeT obtained by

DAT or Z-DAT. In QCR, we examineT in a bottom-up manner and try to adjust

the location of each node inT by the following operations.

1. If a nodev is not a leaf node, we can make it a leaf by cutting the links to

its children and connecting each of its children top(v). (Note that we can

do so becauseT is regarded as a logical tree.) LetT ′ be the new tree after
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modification. We derive that

C(T )− C(T ′) = Q(T )−Q(T ′) + U(T )− U(T ′) =

2×


q(v) +

∑
i∈children(v)∧

i∈leaf node

q(i)




−
∑

i∈neighbors(v)
∧i∈Subtree(v)

wG(v, i)−
∑

i∈children(v)




∑
(x,y)∈EG∧y /∈Subtree(i)

∧x∈Subtree(i)

wG(x, y)




+
∑

(x,y)∈EG∧y /∈Subtree(v)

∧x∈Subtree(v)∧x6=v

wG(x, y). (3.4)

If the amount of reduction is positive, we replaceT by T ′. Otherwise, we

keepT unchanged. Fig. 3.7 illustrates this operation.
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Figure 3.7: Making a non-leaf nodev a leaf node.

2. If a nodev is a leaf node, we can makep(v) closer to the sink by cuttingv’s

link to its current parentp(v) and connectv to its grandparentp(p(v)). Let

T ′ be the new tree. We derive that

C(T )− C(T ′) = Q(T )−Q(T ′) + U(T )− U(T ′) =

2× (q(v) + q′(v))−


2×

∑
(x,y)∈EG∧y /∈Subtree(v)∧

x∈Subtree(v)∧y∈Subtree(p(v))

wG(x, y)


 , (3.5)
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where

q′(v) =

{
0 if p(v) has more than one child inT
q(p(v)) otherwise

.

If the amount of reduction is positive, we replaceT by T ′. Otherwise,T

remains unchanged. Fig. 3.8 illustrates this operation.
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Figure 3.8: Connecting a leaf nodevi to p(p(vi)).

Note that Eq. 3.4 and Eq. 3.5 allow us to compute the reduction of cost without

computingU(T ′) andQ(T ′). This saves computational overhead. Also note that

T is examined in a bottom-up manner in a layer-by-layer manner. Nodes that are

moved to an upper layer will have a chance to be reexamined. However, to avoid

going back and forth, nodes that are not moved will not be reexamined.

For example, suppose that we are given a DAT tree in Fig. 3.9(a) (which is

constructed from Fig. 3.1(b)), where the number labelled on each node is its query

rate. When examining the bottom layer, we will apply step 2 to sensorsH, J , and

K and obtain reductions of1974, −62, and−6, respectively. Hence, onlyH is

moved upward as shown in Fig. 3.9(b). When examining the second layer, we

will apply step 1 to sensorG andI and apply step 2 to sensorsC, E, andH. Only

when applying to sensorH, it will result in a positive reduction of1970. This

updates the tree to Fig. 3.9(c). Finally, sensorsB, D, andF are examined. Only

D has a positive reduction of1842. Thus,D will become a leaf and all its children

are connected toD’s parent as shown in Fig. 3.9(d). Overall, the cost is reduced

from 7124 to 5150, 3180, and then 1338 after each step respectively.
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Figure 3.9: An execution example of algorithm QCR.
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Finally, we show how to derive Eq. 3.4 and Eq. 3.5. To begin with, we present

two implicit facts used in the following derivations. First, according to Theorem 1,

we can conclude that if the members ofSubtree(v) are not changed, the number

of messages transmitted on edge(v, p(v)) ∈ T will be unchanged. Second, when

a nodev is being examined by QCR,wT (p(v), p(p(v))) must be 1. This fact holds

because the input of QCR algorithm is a DAT/Z-DAT tree and the tree is examined

in a bottom-up manner.

First, we derive theQ(T )−Q(T ′) in Eq. 3.4. Whenv becomes a leaf and the

queried object locates at the sensing field ofv, the query only has to be sent to

p(v). In addition, when one ofv’s children, sayi, is connected top(v) andi is a

leaf,p(v) also can reply the query if the queried object locates at the sensing field

of i. Thus, we have

Q(T )−Q(T ′) = 2×


q(v) +

∑
i∈children(v)
∧i∈leafnode

q(i)


 .

Now we derive theU(T ) − U(T ′) in Eq. 3.4. The operation of QCR ensures

that when one ofv’s children, sayi, changes its parent top(v), the update cost

will be increased by

∑

i∈children(v)




∑
(x,y)∈EG∧y /∈Subtree(i)

x∧∈Subtree(i)

wG(x, y)


 .

In addition, the events betweenv andi, wherei ∈ neighbors(v) andi ∈ Subtree(v),

will be reported top(v) rather thanv whenv becomes a leaf. Thus,v must forward

an additional message top(v). The increased cost is

∑
i∈neighbors(v)∧

i∈Subtree(v)

wG(v, i).

However, whenv becomes a leaf, the event across an edge(x, y) ∈ EG such that

y /∈ Subtree(v), x ∈ Subtree(v), andx 6= v will not be transmitted on(v, p(v)).
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The cost is reduced by

∑
(x,y)∈EG∧y /∈Subtree(v)

∧x∈Subtree(v)∧x6=v

wG(x, y).

Combining above three factors, we have

U(T )− U(T ′) = −
∑

i∈neighbors(v)
∧i∈Subtree(v)

wG(x, i)−
∑

i∈children(v)




∑
(x,y)∈EG∧y /∈Subtree(i)

∧x∈Subtree(i)

wG(x, y)




+
∑

(x,y)∈EG∧y /∈Subtree(v)

∧x∈Subtree(v)∧x6=v

wG(x, y).

Next, we derive Eq. 3.5. To seeQ(T ) − Q(T ′), observe that whenv changes

its parent fromp(v) to p(p(v)), the saved query cost isq(v). Furthermore, when

p(v) has only one childv, the adjustment ofv will makep(v) a leaf. This saves a

query cost ofq(p(v)). Therefore, we have

Q(T )−Q(T ′) = 2× (q(v) + q′(v)).

The value ofU(T ) − U(T ′) is affected by three factors, whenv changes its

parent fromp(v) to p(p(v)). The update cost will be increased by

∑
(x,y)∈EG∧y /∈Subtree(v)

∧x∈Subtree(v)

wG(x, y).

For edges that have one incident vertex inSubtree(v) and one incident vertex is

in Subtree(p(v)) but not inSubtree(v), the events across these edges cannot be

absorbed byp(v) afterv changes its parent fromp(v) to p(p(v)). The increased

update cost will be: ∑
(x,y)∈EG∧y /∈Subtree(v)∧

x∈Subtree(v)∧y∈Subtree(p(v)

wG(x, y).

However, for edges that have one incident vertex inSubtree(v) and one incident

vertex is not inSubtree(p(v)), the events across these edges will be transmitted

28



on (v, p(p(v))) rather than(v, p(v)) when we connectsv to p(p(v)). The update

cost will be decreased by

∑
(x,y)∈EG∧x∈Subtree(v)

∧y /∈Subtree(p(v))

wG(x, y).

Combing these terms leads to the following equation

U(T )− U(T ′) = −
∑

(x,y)∈EG∧y /∈Subtree(v)

∧x∈Subtree(v)

wG(x, y)−
∑

(x,y)∈EG∧y /∈Subtree(v)∧
x∈Subtree(v)∧y∈Subtree(p(v))

wG(x, y)

+
∑

(x,y)∈EG∧x∈Subtree(v)

∧y /∈Subtree(p(v))

wG(x, y) = −


2×

∑
(x,y)∈EG∧y /∈Subtree(v)∧

x∈Subtree(v)∧y∈Subtree(p(v))

wG(x, y)


 .

3.3 Simulation Results

We have simulated a sensing field of size256×256. Unless otherwise stated,4096

sensors are deployed in the sensing field. Two deployment models are considered.

In the first one, sensors are regularly deployed as a64× 64 grid-like network. In

the second model, sensors are randomly deployed. In both models, the sink may

be located near the center of the network or one corner of the network.

Event rates are generated based on a model similar to thecity mobility model

in [14]. Assuming the sensing field as a square of sizer × r, the model divides

the field into2× 2 sub-squares calledlevel-1subregions. Each level-1 subregion

is further divided into2× 2 sub-squares calledlevel-2subregions. This process is

repeated recursively. Given an object located in any position in the sensing field,

it has a probabilityp1 to leave its current level-1 subregion, and a probability

1 − p1 to stay. In the former case, the object will move either horizontally or

vertically with a distance ofr/2. In the latter case, the object has a probability

p2 to leave its current level-2 subregion, and a probability1 − p2 to stay. Again,

in the former case, the object will move either horizontally or vertically with a

distance ofr/22, and in the latter case it may cross level-3 subregions. The process
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repeats recursively. The probabilitypi is determined by an exponential probability

pi = e−C·2d−i
, whereC is a positive constant andd is the total number of levels.

In fact, the above behavior only formulates how objects move in the sensing field.

After sensors are deployed in the network (no matter the sensors are deployed in

a regular or random way), the movement patterns of these objects will generate

event rates between neighboring sensors. Also, objects are queried by the sink

with the same probability. Since objects may be located at different sensors with

different probabilities, the query rates may vary in different sensors.

We compare our schemes with a naive scheme and the DAB scheme [14].

In the naive scheme, any update is sent to the sink (i.e., there is no in-network

processing capability.) In this case, the query cost is always zero, so it is preferable

when the query rates are relatively high. For the DAB scheme, all sensors are

considered leaf nodes, and a logical structure is used to connect these leaf nodes.

When two subtrees are merged into one, the root of the subtree which is closer

to the sink will become the root of the merged tree (note that this may still cause

deviation).

First, we observe the advantage of using in-network processing to reduce up-

date cost. Fig. 3.10 shows the result under different values ofC for regular and

random sensor deployment. Note that(α, δ) is set to(8, 0) for the Z-DAT. As

can be seen, a largerC implies a higher moving locality, thus leading to a lower

update cost. The naive scheme has the highest update cost, which is reasonable.

By exploiting the concept of deviation avoidance and taking the physical topology

into account, DAT and Z-DAT further outperform DAB.

Next, we investigate the effect of deployment models. By comparing, the

graphs in Fig. 3.10, we see that Z-DAT outperforms DAT under regular deploy-

ment, but the advantage is almost negligible under random deployment. This is

because maintaining the shapes of subtrees in Z-DAT is difficult. For example,

Fig. 3.11 shows snapshots of DAT trees and Z-DAT trees under regular and ran-

dom deployments. Note that in this experiment, we assume that there are only

1024 sensors with the sink at the lower-left corner and(α, δ) is set to(8, 0) for the
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(a) regular deployment, sink at a corner
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(c) random deployment, sink at a corner
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(d) random deployment, sink at the center
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Figure 3.10: Comparison of update costs.

Z-DAT. As can be seen, Z-DAT does exploit the locality of sensors by partitioning

sensors into zones under regular deployment. However, this is not true for the

random case.

To get further insight into the performance of Z-DAT, we varyα andδ, and

show the results in Fig. 3.12, where a 4096- and a 2500-node sensor networks

are simulated and sinks are located at the center of the network. Note that when

α = 1 andδ = 0, Z-DAT is equivalent to DAT. For regular deployment, Z-DAT

performs well whenα is larger than 4. However, for random deployment, the

Z-DAT does not perform well, because maintaining the shapes of subtrees in Z-

DAT is difficult. Furthermore, it can be seen that whenδ = 0, Z-DAT has better

performance. This means that a square-like zone is better than a rectangle-like

zone. Also, note that the trend in both 4096- and 2500-node sensors networks (the

latter has a non-power-of-2 number of nodes) are quite similar.
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(a) A DAT tree. (Regular Deployment) (b) A Z−DAT tree. (Regular Deployment)

(c) A DAT tree. (Random Deployment) (d) A Z−DAT tree. (Random Deployment)

Figure 3.11: Snapshots of treeT obtained by DAT and Z-DAT under regular and
random deployments.

32



(a) regular deployment, C=0.1, 4096 sensors
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(b) random deployment, C=0.1, 4096 sensors
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(c) regular deployment, C=0.1, 2500 sensors
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(d) random deployment, C=0.1, 2500 sensors
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Figure 3.12: Comparison of update costs under different(α, δ) for Z-DAT.

Next, we examine the query cost. The result is shown in Fig. 3.13. In general,

the query cost increases linearly with the aggregate query rate. As mentioned

earlier, the query cost of the naive scheme is always zero. Both query costs for

DAT and Z-DAT are lower than that of DAB. This is attributed to the fact that

query messages are always transmitted along the shortest paths between the sink

and sensors in DAT and Z-DAT. Also due to the similar reason, the query cost is

independent of the shape ofT ; thus, DAT and Z-DAT perform similarly despite

the deployment models.

Finally, we examine the effectiveness of algorithm QCR by showing the total

update and query costs of different schemes in Fig. 3.14. (For visual clarity, the

cost of DAT are not shown.) The naive scheme has a constant cost because it is

not affected by the query rate. The costs of DAB and Z-DAT increase linearly

with respect to the query rate. As a result, they are outperformed by the naive

scheme after the query rate reaches a certain level. Our Z-DAT with QCR scheme

performs the best at all query rates. When the query rate is low, it performs close

to Z-DAT. On the other hand, when the query rate increases, it works similar to
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(a) regular deployment, sink at a corner
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(b) regular deployment, sink at the center
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(c) random deployment, sink at a corner
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(d) random deployment, sink at the center
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Figure 3.13: Comparison of query costs. (C = 1.0)
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(a) regular deployment, sink at a corner
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(b) regular deployment, sink at the center
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(b) regular deployment, sink at the center
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(d) random deployment, sink at the center
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Figure 3.14: Comparison of total costs. (C = 1.0)

the naive schemes. This verifies the advantage of the proposed DAT/Z-DAT with

QCR schemes.

3.4 Summary

In this chapter, we have developed several efficient ways to construct a logical ob-

ject tracking tree in a single-sink sensor network. We have shown how to organize

sensor nodes as a logical tree so as to facilitate in-network data processing and to

reduce the total communication cost incurred by object tracking. For the location

update part, our work can be viewed as the extension of the work in [14], and we

enhance the work by exploiting the physical structure of the sensor network and

the concept of deviation avoidance. In addition, we also consider the query oper-

ation and formulate the query cost of an object tracking tree given the query rates
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of sensors. In particular, our approach tries to strike a balance between the update

cost and query cost. Performance analyses are presented with respect to factors

such as moving rates and query rates. Simulation results show that by exploiting

the deviation-avoidance trees, algorithms DAT and Z-DAT are able to reduce the

update cost. By adjusting the deviation-avoidance trees, algorithm QCR is able

to significantly reduce the total cost when the aggregate query rates is high, thus

leading to efficient object tracking solutions.
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Chapter 4

In-network Location Management
for the Multi-sink System

In the previous chapter, it is assumed that there is only one sink in the network.

In this chapter, we explore the possibility of having multiple sinks in the network.

One advantage of having multiple sinks is to reduce the response time of queries.

In addition, using multiple sinks can also relieve the traffic congestion problem

associated with a single-sink system (i.e., using multiple sinks can achieve load

balance more easily). In order to support location management in a multi-sink

wireless sensor network, we can extend the tree structure used in the single-sink

system by constructing a logical tree for each sink. However, this implies that

updating multiple trees is required when a movement event is detected. Assuming

that there arem sinks coexisting in the network, if each tree is updated indepen-

dently, the update cost will become approximatelym times. It is desirable to

further reduce the update cost when multiple trees coexist in the network. In this

chapter, by exploring the concept of data aggregation, we propose an algorithm to

efficiently update multiple trees. With proper design, we show that the update cost

increases slightly when the number of trees (i.e., the number of sinks) increases.

Based on the foregoing update algorithm, we formulate the update cost that gives

us hints to develop efficient tree-construction algorithms. Two distributed multi-

tree construction algorithms are presented in this chapter. Experimental results

show that the increased update cost with multiple trees can be compensated by
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lower query cost and the query cost also depends onm, the number of sinks.

This allows us to further investigate how to choose the value ofm under different

scenarios.

4.1 Preliminaries

4.1.1 Network Model

The network model used in this chapter is the same with that used in the single-

sink system. We consider a WSN to be used for object tracking. We adopt a simple

nearest-sensor trackingmodel, in which the sensor that receives the strongest

signal from an object is responsible for tracking the object (this can be achieved

by [7] and we omit the details). Therefore, the sensing field can be modelled by a

Voronoi graph[4], where each sensor’s responsible area is the polygon containing

itself. Two sensors are calledneighborsif their sensing ranges share a common

boundary on the Voronoi graph. Multiple objects may be tracked concurrently by

the network, and we assume that from mobility statistics, it is possible to collect

the frequency that objects move between each pair of neighboring sensors, called

theevent rate.

4.1.2 From Single-sink to Multi-sink WSNs

In the previous chapter, an in-network location management scheme for a single-

sink sensor network is proposed. First, a treeT rooted at the sink is constructed.

If an object moves from one sensor to another, update messages will be forwarded

to the lowest common ancestor of these two nodes inT . For example, in Fig. 4.1,

a tree rooted at sensorA is constructed from theG shown in Fig. 3.1(b). When

Car1 moves fromH to C, update messages will be forwarded fromH to B and

from C to B respectively. This allows each nodex to always keep a fresh list of

objects that are currently tracked by each of the subtrees rooted atx’s children.

When a user inF inquiresCar1’s location, the query will be sent to the sink first
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and then forwarded along a path of the tree according to the lists maintained by

sensors, as shown in Fig. 4.1.
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Figure 4.1: An example of the single-sink system.

In this chapter, we assume that multiple sinks coexist inG. Our goal is to

reduce the number of messages transmitted for update and query. A naive way

to extend a single-sink system to a multi-sink system is to construct a virtual tree

Tx = (VG, ETx) for each sinkx, whereETx ⊆ EG. For example, Fig. 4.2(a)

extends the network in Fig. 4.1 such that both sensorsA andB are sinks. Three

issues should be addressed when multiple trees coexist.

1. Update and query mechanisms:When an object moves, updating multi-

ple trees is required in a multi-sink system. If we apply the same update

mechanism used in a single-tree system to each tree independently, the up-

date cost will increase approximatelym times, wherem is the number of

trees. This is apparently inefficient. Therefore, update aggregation should

be done to reduce the update cost in a multi-sink system. Further, the query

mechanism should be designed carefully. We will show later that the query

paths from sinks to the target sensor may cause a cycle. The cycle problem

should be avoided.
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2. Multi-tree construction: Our proposed update and query mechanisms can

be applied to any multi-tree system. However, different multi-tree construc-

tion algorithms will cause different update costs. We will formulate the

update cost and point out the factors that affect the update cost. Then, we

propose two efficient distributed multi-tree construction algorithms.

3. The number of trees used:Obviously, using multiple trees will increase

update cost; however, the increase can be compensated by lower query cost

(this will be verified further through simulation). Because both the update

cost and the query cost are affected by the number of trees used, we will

investigate the proper value ofm under various scenarios.

A


B


C


D

E


F


G


H


I


J


K


(a)


Car1


Car3


Car2


DL

D

(G)=


{Car2}
)


DL

A

(A)={Car3},


DL

A

(B)={Car1},


DL

A

(D)={Car2}


DL

B

(A)={Car3}, 
DL


B

(D) ={Car2},


DL

B

(C)=
DL


B

(E)={Car1},


DL

E

(H)=


{Car1}


DL

G

(G)=


{Car2}


DL

C

(H)=


{Car1}


DL

H

(H)=


{Car1}


T

A


T

B


A


B


C


D

E


F


G


H


I


J


K


(b)


Car1


Car3


Car2


DL

D

(F)=


{Car2}


DL

A

(A)={Car3},


DL

A

(B)={Car1},


DL

A

(F)={Car2}


DL

F

(I)=


{Car2}


DL

B

(A)={Car3}, 
DL


B

(C)={Car1},


DL

B

(D)={Car2}


DL

C

(C)


={Car1}


DL

I

(I)={Car2}


U

p

d

a

t
e


(
C

a


r
2

,
G


,
I

)


U

p


d

a

t
e


(
C

a


r
2

,
G


,
I

)


U

p


d

a

t
e


(
C

a

r
2


,
G

,
I


)


U

p
d


a
t
e

(
C


a

r
1
,
H


,
C

)


U

p
d
a
t
e
(
C


a
r
1
,
H

,
C


)


U
p
d
a
t
e
(
C
a
r
1
,
H
,
C
)


U
p
d
a
t
e

(
C


a
r
2

,
G


,
I
)



U
p
d
a
t
e
(
C
a
r
2
,
G
,
I
)


Figure 4.2: (a) TheDLs stored in sensors. (b) An example whereCar2 moves
from G to I andCar1 moves fromH to C.
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4.2 Update and Query Mechanisms in Multi-Sink
WSNs

4.2.1 Notations and Data Structures

We consider a WSN withn sensors,m of which (denoted byσi, i = 1, · · · , m) are

designated as sinks. For each sinkσi, we assume that a treeTσi
rooted atσi has

been constructed fromG. Table 4.1 summaries the notations used in this chapter.

Then, we introduce the data structures used in this chapter. Moreover, each sensor

x will keep two tables in order to process updates and queries:

• SubtreeMemberSx: It is anm×n table to indicate whether another sensor

is a descendant ofx in a certain tree. Specifically,Sx(Tσi
, j) = 1 if sensor

j is a descendant ofx in treeTσi
; otherwise,Sx(Tσi

, j) = 0. For example,

in Fig. 4.2(a),SD(TB, F ) = 1 andSD(TA, F ) = 0. All values in this table

will not change after all trees are through with construction.

• DetectedList DLx: It is a table withk + 1 entries, wherek is the number

of neighbors ofx. Each entry maintains a set of objects. For sensorx

itself, DLx(x) contains the objects currently being tracked byx. For each

neighbory of x, DLx(y) contains all objects that are currently being tracked

by the subtrees of someTσi
, i = 1, · · · , m, rooted aty, i.e., DLx(y) =

{o|∃z, i s.t. o ∈ DLz(z), Sy(Tσi
, z) = 1, andx = pi(y))}. This implies

that if o is tracked by sensorz currently andy is an ancestor ofz in a certain

tree, thenx can know how to findo by askingy. For example, in Fig. 4.2(a),

D is a neighbor ofA. BecauseSD(TA, G) = 1 andCar2 is tracked byG,

Car2 ∈ DLA(D). (Note that in Fig. 4.2(a) entries with empty set are not

shown.) DetectedList is a dynamic table. When an object moves from

one sensor to another, some sensors’DetectedLists have to be modified

accordingly.
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Table 4.1: Summary of notations used in Chapter 4.
distG(u, v) The minimum hop count betweenu andv in G.

nei(v) The neighbors ofv in G.
distTσi

(u, v) The hop count of the path connectingu andv in Tσi
.

wG(u, v) The event rate betweenu andv.
lcai(u, v) The lowest common ancestor ofu andv in Tσi

.
pi(v) The parent ofv in Tσi

.
σi The root ofTσi

.

4.2.2 The Location Update Mechanism

The goal of location update is to ensure that theDetectedLists of sensors are

fresh. The main idea here is that when an objecto moves from sensora’s re-

sponsible polygon to sensorb’s responsible polygon, for each sinkσi, the update

messages should be sent froma andb alongTσi
to lcai(a, b), the lowest common

ancestor ofa andb in Tσi
. The reason for doing so is that theDetectedLists of

the ancestors oflcai(a, b) will not be affected by this movement. Furthermore,

instead of allowing all trees to update independently, we will update trees simul-

taneously with some data aggregation techniques. We make the following obser-

vation. In a system withm trees, a sensorx needs to maintainpi(x) for eachTσi
,

i = 1, · · · ,m. Because the number of neighbors ofx may be smaller thanm,

some of thepi(x)s may be duplicate and thus can be updated together. This also

implies that when a nodey receives an update message, nodey should update its

DetectedList by considering several trees rather than one tree. Thus, the update

mechanism comprises two parts: (1) the forwarding rule of the update message,

and (2) the updating rule of theDetectedList. Furthermore, the update message

sent for the event that an objecto moves from sensora to sensorb is denoted by

Update(o, a, b, eventid), whereeventid is to uniquely represent this event.

Forwarding Rule: When an objecto moves from sensora to sensorb, for

each treeTσi
, every node on the tree paths froma to lcai(a, b) and fromb to

lcai(a, b) should receive the update message at least once. Note that if a nodex

is on the path froma to lcai(a, b) in Tσi
andx 6= lcai(a, b), thenSx(Tσi

, a) = 1
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and Sx(Tσi
, b) = 0. Similarly, if x is on the path fromb to lcai(a, b) in Tσi

andx 6= lcai(a, b), thenSx(Tσi
, a) = 0 andSx(Tσi

, b) = 1. If x is lcai(a, b),

then Sx(Tσi
, a) = 1 and Sx(Tσi

, b) = 1. Thus, when any nodex receives a

newUpdate(o, a, b, eventid) message, nodex can use the following statement to

determine whether it is on the tree paths froma to lcai(a, b) or fromb to lcai(a, b):

∃i((Sx(Tσi
, a) = 0 ∧ Sx(Tσi

, b) = 1) ∨
(Sx(Tσi

, a) = 1 ∧ Sx(Tσi
, b) = 0)) (4.1)

(Note that Eq. 4.1 includes the special cases ofx = a andx = b, in which the

movement ofo rather than receiving an update message will makex checking

Eq. 4.1.) Ifx receives the update message for the first time and there is a treeTσi

making Eq. 4.1 true, then an update message should be sent topi(x). However, if

two treesTσi
andTσj

both satisfy Eq. 4.1 andpi(x) = pj(x), then only one update

message needs to be sent (the same applies if multiple trees satisfy Eq. 4.1). This

is what we mean by update aggregation.

Updating Rule: When a node is notified that an objecto moves from sensora

to sensorb, it will update itsDetectedList as follows.

• For sensora, it will remove o from DLa(a) and check whether there exist

a treeTσi
and a neighbory such thatSa(Tσi

, b) = 1 anda = pi(y). If the

answer is affirmative, this implies thata can findo by askingy. Thus, it

addso into DLa(y).

• For sensorb, it will add o into DLb(b) and removeo from other entries of

DLb if o appears in other entries.

• For any other sensorx that receives the update message fromy, if ∃i(Sx(Tσi
, b)

= 1 ∧ x = pi(y)) is true, this implies thatx can findo by askingy; thuso

will be added toDLx(y). Otherwise,o will be removed fromDLx(y) if o

appears inDLx(y).
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Fig. 4.2(b) shows an example whereCar2 moves fromG to I andCar1 moves

from H to C. The modifiedDLs and the reported messages are also shown in

Fig. 4.2(b). Our update scheme ensures that when an objecto moves from one

sensor to another, if no packet loss happens and the update procedure can be com-

pleted beforeo moves to another sensor, then the freshness ofDetectedLists of

sensors can be guaranteed.

Next, we derive the number of messages required to be sent per unit time for

location update as follows.

U =

(
m∑

i=1

U(Tσi
)

)
−

(∑
v∈VG

SC(v)

)
, (4.2)

whereU(Tσi
) is the update cost for treeTσi

if Tσi
is the only tree in the network

andSC(v) is the saved cost for sensorv due to the overlap of tree edges among

m trees.U(Tσi
) can be formulated as

U(Tσi
) =

∑
(u,v)∈EG∧
(u,v)/∈ETσi

(wG(u, v)×

(distTσi
(u, lcai(u, v)) + distTσi

(v, lcai(u, v)))), (4.3)

wheredistTσi
(x, y) is the hop count of the path connectingx andy in Tσi

. To

explain the meaning of Eq. 4.3, we assume thatTσi
is the only tree in the net-

work. When an event occurs on(u, v), the update messages will be forwarded to

lcai(u, v) according to the forwarding rule. Eq. 4.3 is similar to the cost function

for a single tree in [16], except that when(u, v) ∈ ETσi
there is no cost because

eitheru or v is lcai(u, v) and thus no update message has to be sent. This leads to

Eq. 4.3. The formulation ofSC(v) depends on the forwarding schemes. Two for-

warding schemes are considered: the broadcast scheme and the unicast scheme.

Due to the broadcast nature of wireless radio, when a sensor sends an update mes-

sage, we assume all its neighbors will receive the update message in the broadcast
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scheme. In this case,SC(v) can be formulated as

SC(v) =
m∑

i=2


(i− 1)×

∑
(s,t)∈EG∧
f(s,t,v)=i

wG(s, t)


 , (4.4)

wheref(s, t, v) represents the number of trees, each of which, sayTσj
, makes

the following statement true((s, t) 6= (v, pj(v))) ∧ ((Sv(Tσj
, s) ∧ ¬Sv(Tσj

, t)) ∨
(Sv(Tσj

, t) ∧ ¬Sv(Tσj
, s))). Intuitively, this means that when an object moves

from s to t or from t to s, v will broadcast an update message to its neighbors for

updating treeTσj
and this broadcast message can update thesei (=f(s, t, v)) trees

simultaneously; therefore,(i− 1) messages are saved. This leads to Eq. 4.4.

However, the packet transmission is unreliable in the broadcast scheme. Once

the update messages are lost during the transmission,DetectedLists may not con-

tain up-to-date information, resulting in the failures of queries. Thus, one also

can adopt the unicast scheme to forward update messages in which each update

message has a designated destination. In this case,SC(v) can be formulated as

SC(v) =
∑

u∈nei(v)




m∑
i=2


(i− 1)×

∑
(s,t)∈EG∧
g(s,t,v,u)=i

wG(s, t)





 , (4.5)

wherenei(v) denotes the neighbors ofv in G andg(s, t, v, u) represents the num-

ber of trees, each of which, sayTσj
, makes the following statement true(u =

pj(v))∧((s, t) 6= (v, u))∧((Sv(Tσj
, s)∧¬Sv(Tσj

, t))∨(Sv(Tσj
, t)∧¬Sv(Tσj

, s))).

Eq. 4.5 is similar to Eq. 4.4 except that each ofv’s neighbors is considered sep-

arately. Though the unicast scheme can provide reliable transmission using ac-

knowledgement mechanisms, the number of saved packets is smaller than that in

the broadcast scheme. We will compare the performances of the broadcast scheme

and the unicast scheme through simulation in which packet loss will be simulated.

Eq. 4.3, Eq. 4.4 and Eq. 4.5 will give us hints for constructing message-efficient

multiple virtual trees.
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4.2.3 The Location Query Mechanism

Now, we describe our location query mechanism. We assume that a user can issue

a query from any sensor. When a sensorx receives a query for objecto, there

are two scenarios: (1)o does not appear in any of the entries ofDLx, and (2)o

appears at least in one of the entries ofDLx.

In the first scenario,x will forward the query to the closest sink, sayσj, in

order to inquireo’s location. The reason for doing so is that, for each sinkσi, it

can be easily shown that all objects tracked by the network will be contained in

DLσi
. However, on the query’s way to sinkσj, if an intermediate nodey finds

thato appears inDLy, then the second scenario will be initiated immediately.

In the second scenario, we will show howx can forward the query to locateo.

We can model the WSN responsible for tracking objecto as a directedquery graph

G
′
o = (VG, EG′o

), where a directed edge(u, v) ∈ EG′o
if and only if o ∈ DLu(v).

Our location update mechanism guarantees that ifx forwards the query along the

query graphG
′
o, theno is always reachable. For example, Fig. 4.3(a) shows the

query graphG
′
Car1 of Fig. 4.2(a) forCar1, whereA andB are sinks. It means

that x can simply forward the query to anyy such thato ∈ DLx(y). This is

repeated until a sensorz such thato ∈ DLz(z) is reached. However, the fact that

o is reachable viay from x in G
′
o does not necessarily imply thatG

′
o is cycle-free

when multiple trees coexist in the network. For example, Fig. 4.3(b) shows two

treesTA andTB and Fig. 4.3(c) shows the query graph forCar1, which have a

cycle containingD, F , andG. A query forwarded as above may loop infinitely.

A simple way to solve the infinite loop problem is to force a query to al-

ways travel along a designated tree. In order to achieve this, we can add a field

tree index to the query request. Once thetree index is set by a certain sensor,

the following sensors can follow the tree designated bytree index. Here, we pro-

pose an alternative solution which imposes that all trees be shortest-path trees. If

so, not only the query and update paths can be shortest, but also the corresponding

G
′
o for each objecto is always cycle-free. Thus, our query mechanism will work
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Figure 4.3: (a) The query graphG
′
Car1 of Fig. 4.2(a) forCar1. (b) Another ex-

ample of a two-tree system. (c) The query graph of (b) forCar1, which contains
a cycle.

correctly.

Theorem 4. If all trees are shortest-path trees, the query graphG
′
o for each object

o tracked by the network must be cycle-free.

Proof. Without loss of generality, we assumeo is tracked by sensorx currently.

For the purpose of contradiction, we assume that all trees are shortest-path trees

but a cycle< c0, c1, ..., ck, c0 > exists inG
′
o. Let cj be the vertex in the cycle

with minimumdistG(x, cj). The fact that(cj, cj+1) is an edge in the cycle implies

thato ∈ DLcj
(cj+1). This means that there exists a tree, sayTσi

that contains the

edge(cj, cj+1), which can lead tox. BecausedistG(x, cj+1) ≥ distG(x, cj), Tσi

must not be a shortest-path tree. This contradicts our assumption that all trees are

shortest-path trees. Therefore,G
′
o must not contain a cycle.

After the query reaches the sensor currently tracking the queried object, the

sensor can reply to the sensor initiating the query through a shortest path. In the

case that the user is capable of mobility, the user should update with the initiating

sensor its position until a reply is received. This would solve the mobility problem.
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4.3 Multi-Tree Construction Algorithms

The above derivations have suggested that trees rooted at sinks should be shortest-

path trees to avoid the cycle problem. In addition, following the derivation of

Eq. 4.2, these trees should be constructed carefully to reduce communication

costs. Below, we propose two distributed multi-tree construction algorithms,

givenσ1, σ2, ...,σm as the sinks.

4.3.1 The MT-HW Algorithm

From Eq. 4.3, we observe that when an edge(u, v) becomes an edge ofTσi
, the

events occurring on(u, v) do not cause any message to be reported for updat-

ing Tσi
. Therefore, in MT-HW (multi-tree construction with the high-weight-first

property) algorithm, an edge(u, v) with higher weight will be considered for be-

ing included into a tree earlier.

First, we define the termcandidate parents. A sensory is called a candidate

parent ofx for sinkσi, if y isx’s neighbor anddistG(σi, x) = distG(σi, y)+1. We

assume that when the network is initiated, each sinkσi will flood a message in the

network, which helps each sensorx to derivedistG(σi, x) and thusx’s candidate

parents. The MT-HW algorithm works as follows. Each sensorx will sort its

neighbors in a decreasing order according to the event rates between it and its

neighbors. Then, for each sinkσi, x will pick one neighbory as its parent that has

the highest event rate amongx’s candidate parents forσi and sety = pi(x).

Theorem 5. If G is connected, the trees constructed by the MT-HW algorithm

must be connected shortest-path trees.

Proof. SinceG is connected, for eachTσi
, a sensorx (x 6= σi) can always find one

candidate parent as its parent inTσi
. Thus,Tσi

will be a connected tree. Now, we

further show thatTσi
will be a shortest-path tree. By the definition of the candidate

parent, the parent must be closer toσi than the node itself. Therefore, allTσi
are

shortest-path trees.
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4.3.2 The MT-EO Algorithm

From Eq. 4.4 and Eq. 4.5, we observe that if we can increase the number of the

tree edges that overlap with each other, the value ofSC(v) may increase andU

can be reduced. The MT-EO (multi-tree construction with the edge-overlap-first

property) algorithm is designed to increase the level of the overlap among tree

edges.

As the MT-HW algorithm, each sensorx will determine all candidate parents

for each sinkσi. Each ofx’s neighbors is associated with anoverlap counterfor

x. The counter is increased by one whenever a neighbor ofx is considered as a

candidate parent for a sink. Then,x selects the neighbor, sayy, whose overlap

counter is the largest. For each sinkσi wherey is a candidate parent ofx, we

sety = pi(x) for Tσi
. Then, the overlap counters of allx’s neighbors are recom-

puted for those sinks for whichx has not yet determined its parents. Again, the

neighbory whose overlap counter is the largest is selected asx’s parent for the

corresponding sinks. This procedure is repeated untilx has determined its parents

for all sinks.

Theorem 6. If G is connected, the trees constructed by the MT-EO algorithm

must be connected shortest-path trees.

Proof. The proof is similar to that of Theorem 5. The theorem holds because a

non-sink node can always find a parent that is closer to the sink.

In fact, we can easily combine the MT-HW algorithm with the MT-EO algo-

rithm and vice versa. Whenever there is a tie (either the same event rate or the

same overlap counter value), the other algorithm can be used.

4.4 Simulation Results

We have simulated a sensing field of size256 × 256, where1024 sensors are

deployed in the sensing field. Two deployment models are considered. In the
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regular deployment model, sensors are regularly deployed as a32 × 32 grid-like

network. In the random deployment model, sensors are randomly deployed. In

both models, sinks are determined by uniformly partitioning the sensing field into

equal-size grids according to the number of sinks given and choosing the sensor

that is the nearest to the center of the grid as the sink. Further, the event rates of

links are generated based on themodified city mobility modelpresented in Sec. 3.3.

Queries could be issued from any sensor. The query rate is defined as the number

of queries generated in the network per unit time. We compare our schemes with

other two schemes calledQF andMC respectively. In the QF scheme, no update

message will be sent. When a user intends to query an object’s location, the query

message will be flooded in the network. In the MC scheme, when an object moves

to a new sensor, a multicast spanning tree will be formed from the new location of

the object to all sinks and the update message containing the up-to-date location

information of the object is sent to all sinks. In this scheme, any query only needs

to be sent to its nearest sink. Based on the tree construction algorithms and the

forwarding schemes, four schemes proposed by us are compared with the QF and

the MC schemes. Specifically, in the HW-B scheme, the MT-HW algorithm and

the broadcast forwarding scheme are used. In the HW-U scheme, the MT-HW

algorithm and the unicast forwarding scheme are used. In the EO-B scheme, the

MT-EO algorithm and the broadcast forwarding scheme are used. Finally, in the

EO-U scheme, the MT-EO algorithm and the unicast forwarding scheme are used.

As mentioned above, when an object moves from one sensor to another, if

no packet loss arises and the update procedure can be completed within a period

during which the object does not move again, our proposed update mechanism

can ensure that theDetectedLists of sensors are fresh. However, packet loss is a

common phenomenon in a wireless network and transmission delay should also

be taken into consideration. In order to investigate the impact of packet loss,

we develop an event-oriented simulator using C language in which the unslotted

CSMA defined in IEEE 802.15.4 [12] is implemented. Because we observe that

the collision phenomenon is very severe, we assume that a node has to wait10 ∼
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Table 4.2: Parameters used in the simulation for multi-sink systems.
Buffer Size 10
The length of DATA 30 Bytes
The length of ACK 17 Bytes
Bit rate 250 kb/s
Symbol rate 62.5 ksymbol/s
aUnitBackoffPeriod 20 symbols
aTurnaroundTime 12 symbols
macMinBE 3
aMaxBE 5
macMaxCSMABackoffs 4
The maximum number of retransmission 5
Simulation Time 1 hour
Number of Objects 128

60 milliseconds to start a new transmission after it successfully transmits a packet

in order to avoid multiple sensors transmit packets at the same time. Finally, we

assume each sensor’s sending buffer is limited such that for a sensor, if there are

too many packets to be sent simultaneously, some of packets will be discarded.

The related parameters are shown in Table 6.1.

4.4.1 Impact of Objects’ Speeds

First, we consider the scenario in which the update cost dominates the overall

communication cost. To achieve this, we compare all schemes under various ob-

jects’ speeds. Higher the speed is, more events are generated; thus, the update

cost will dominate the performance. In Fig. 4.4, sensors are deployed regularly

and four sinks are deployed. The query rate is set to be 1 query/second in this ex-

periment. Fig. 4.4(a) shows the communication cost (i.e., the number of packets

transmitted in the network) of these schemes with the value of object speed varied.

As can be seen in Fig. 4.4(a), the update cost is constant in the QF scheme because

no update packet has to be sent. The update costs of all other schemes will grow

when the speed becomes higher since more update packets have to be sent. The

update cost of the MC scheme grows enormously, because no in-network process-
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Figure 4.4: Performance study with objects’ speeds varied, where sensors are
deployed regularly and four sinks are deployed.

ing technique is applied. Our proposed schemes outperform the QF scheme and

the MC scheme when the speed is lower than 10 units/second. Since the sens-

ing radius of a sensor is 4 units, 10 units/second is relatively high. We further

give an insight into our proposed scheme. Obviously, the broadcast forwarding

scheme has lower update cost than the unicast scheme has. However, as can been

seen later, the unicast scheme has higher query success rate than the broadcast

scheme has. Besides, we can see that the MT-EO scheme outperforms the MT-

HW scheme slightly, because more packets are saved due to the overlap of tree

edges.

Fig. 4.4(b) shows the query response time of these schemes, where the query

response time is defined as the time elapsed between the time at which the query

issued and the time at which the query result returned. The MC scheme is the best
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because any query only has to be forwarded to the sink. Our proposed schemes

are slightly worse than the QF scheme because two phases are required in our

schemes. Although the MC scheme has the best performance in terms of query

response time, the query result may not be the most up-to-date one. This problem

becomes further severe when packet loss happens. A measurement, query error, is

defined as the number of hops between the real location of the object and the lo-

cation carried by the query reply at the time at which query is returned to the user.

In Fig. 4.4(c), it can be seen that the MC scheme suffers from higher query errors.

Finally, Fig. 4.4(d) shows the query success rates under different schemes. Note

that a query may fail due to packet collision, packet loss, buffer overflow and con-

taminatedDetectedLists. More packets transmitted in the network usually means

more collision. Thus, our proposed scheme and the MC scheme perform worse

than the QF scheme does eventually, but all schemes have similar performance

under reasonable speed. Note that the broadcast forwarding scheme has the worst

performance due to the contaminatedDetectedList problem; however, the unicast

forwarding scheme can be used to solve this problem.

Since the number of sinks is an important issue in this chapter, the scenario

used in Fig. 4.4 is applied again in Fig. 4.5 except that 256 sinks are deployed

now. It is observed that if the number of sinks is large, a considerable amount

of update messages will be generated. Thus, when the update cost dominates

the communication cost, using less sinks is better. Finally, experiments with the

random deployment model is investigated in Fig. 4.6, where the number of sinks

is 4. We can see that the success rates under the random deployment model are

lower than that under the regular deployment model, because the collision phe-

nomenon is very severe in the random deployment model. When a node has many

neighbors, this node usually suffers severe collision due to the contention and the

hidden terminal problem. Therefore, we further compute the average number of

neighbors of a sensor. The average numbers of neighbors of a sensors under the

regular deployment model and the random deployment model are 3.875 and 5.666

respectively. Thus, we conjecture that the severe collision phenomenon in the ran-
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Figure 4.5: Performance study with objects’ speeds varied, where sensors are
deployed regularly and 256 sinks are deployed.
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Figure 4.6: Performance study with objects’ speeds varied, where sensors are
deployed randomly and four sinks are deployed.

dom deployment model is caused by the hidden terminal problem and the higher

contention between sensors. We further give an insight into our proposed scheme.

We can find that the performance of the unicast forwarding scheme is very bad due

to the buffer overflow problem. The reason can be explained as follows: when an

event occurs, there are averagely 5.666 update packets will be injected into the

sending buffer and the length of sending buffer is 10 only. Thus, the length of

the sending buffer should be designed carefully. Other most observations made

under the regular deployment model could be applied to the random deployment

model. In the following experiments, we only show the results under the regular

deployment model.
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4.4.2 Impact of Query Rates

Now we consider the scenario in which the query cost dominates the overall com-

munication cost. To achieve this, we compare all schemes by adjusting query

rates. When the query rate is high, the query cost will dominate the performance.

The object’s speed is set to be 1 unit/second in this experiment. 4 and 256 sinks

are deployed in Fig. 4.7 and Fig. 4.8 respectively. First, we compare the commu-

nication costs under different schemes. As shown in Fig. 4.7(a) and Fig. 4.8(a),

the QF scheme is the worst one, because queries are disseminated by flooding.

On the contrary, in our proposed schemes, queries are disseminated by unicasting.

Thus, our proposed schemes have the best performance. We can further observe

that when the number of sinks increases from 4 to 256, the communication cost

of the MC scheme also grows due to higher update costs. However, our proposed

schemes can achieve almost the same cost when the number of sinks increases.

This is because using multiple sinks can reduce the query cost by a shorter query

path and the saved query cost can be used to compensate the increased update cost.

Thus, the advantage of using multiple sinks can be achieved when the query cost

dominates the performance. In addition, when the number of sinks increases (i.e.,

from 4 in Fig. 4.7 to 256 in Fig. 4.8), it can be seen that the query response time

of our proposed schemes in Fig. 4.8(b) is slightly smaller than that in Fig. 4.7(b)

due to shorter query paths. As shown in Fig. 4.7(c) and Fig. 4.8(c), although the

MC scheme is the best one in terms of query response time, it is the worst one in

terms of query error. Finally, in Fig. 4.7(d) and Fig. 4.8(d), we can see that the QF

scheme is the worst one in terms of success rate, because of the collision incurred

by the flooding.

4.4.3 Impact of the Number of Sinks

From the previous experimental results, it can be seen that when the query cost

dominates the communication cost, using multiple sinks can achieve better per-

formance. Thus, we further investigate the impact of the number of sinks on the
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Figure 4.7: Performance study with query rates varied, where sensors are de-
ployed regularly and four sinks are deployed.
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Figure 4.8: Performance study with query rates varied, where sensors are de-
ployed regularly and 256 sinks are deployed.
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performance. The query rate is set to be 10 queries/second and the objects’ speed

is set to be 0.333 and 0.111 respectively. In Fig. 4.9(a) and Fig. 4.10(a), it can

be seen that the communication costs almost do not increase when the number of

sinks increases, because the increased update cost can be compensated by lower

query cost. As can be seen in Fig. 4.9(b) and Fig. 4.10(b), using multiple sinks

can reduce the query response time slightly due to shorter query paths. Fig. 4.9(c)

and Fig. 4.10(c) show the values of the standard deviation of the number of pack-

ets transmitted by each sensor. It is observed that when the number of sinks in-

creases, the values of the standard deviation are reduced. This is because queries

are dispersed to multiple sinks rather than a single sink. Thus, load balance can be

achieved by using multiple sinks. Finally, in Fig. 4.9(d) and Fig. 4.10(d), it can be

seen that using multiple sinks is able to increase the success rate, because shorter

query paths could result in less collision.

4.4.4 Multi-Sink Systems with Partial Storage

As mentioned above, using multiple trees will increase the update cost. A simple

way to reduce the update cost while achieving the advantage of load balance at

the same time is to explore thepartial storage technique. The partial storage

technique is motivated by GHT [23]. The basic idea is that each object’s location

will be stored in only some of the sinks. In our simulation, the partial storage

technique is implemented as follows.

First, we evenly divide the sensing field intom zones, each of which has an

unique ID. For each zone, the sensor closest to the center of the zone is designated

as the sink. Then, each object is hashed intol zones, wherel (< m) is a predefined

number, and an object only needs to update its location with the sinks of thesel

zones.

Now, we demonstrate the benefit of the partial storage technique by simula-

tion. The query rate is set to be 2 queries/second and the objects’ speed is set

to be 1 unit/second. We compare the EO-B and the EO-U schemes withα sinks
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Figure 4.9: Performance study with the number of sinks varied, where the objects’
speed is set to be 0.333 unit/second.
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Figure 4.10: Performance study with the number of sinks varied, where the ob-
jects’ speed is set to be 0.111 unit/second.
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Figure 4.11: The performance of the partial storage technique.

against the EO-B-PS and the EO-U-PS schemes (which mean the EO-B and the

EO-U schemes extended with the partial storage technique) with 1024 zones and

α hashed zones per object. Fig. 4.11 shows the results with the value ofα var-

ied. It can be observed that, although the communication costs of the EO-B-PS

scheme and the EO-U-PS scheme are higher, the values of the standard deviation

of the numbers of packets transmitted by each sensor are lower. Thus, using the

partial storage technique can achieve better load balance.

4.5 Summary

In this chapter, we have proposed an in-network update and query algorithm for

a multi-sink WSN. This algorithm strikes the tradeoff between the update and

query costs. Having multiple sinks is important when the network scale is large
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or when the query rate is high. The corresponding update cost is formulated for-

mally. Based on the formulation, we have presented two distributed algorithms to

construct multiple trees. We have verifies the benefits of a multi-sink WSN from

different aspects, including the total (update plus query) cost, the number of sinks,

query response time, query success rate, and load balance factor.

63



Chapter 5

Imprecision-tolerant Location
Management Model

Since inaccuracy, or even error, of sensing data is inherent for WSNs, applica-

tions of WSNs usually have to tolerate some degree of imprecision. This property

has been exploited in the design of network protocols for WSNs. For example,

precision-constrained data aggregation is considered in [28], and a storage sys-

tem that supports drill-down queries with different precision levels is proposed in

[11]. Similarly, in moving object environments, maintaining the exact locations

of objects anytime is almost infeasible [8, 33]. Not only the positioning results

are error-prone, but also the data transfer delay and object mobility make the lo-

cations of objects inaccurate. Fortunately, imprecision is tolerable in many object

tracking applications. For example, when life scientists intend to track an animal,

it may be sufficient to know its moving direction rather than its exact location.

In addition, the location information recorded several hours ago, instead of at

the current time, may still be helpful for the life scientists to understand the ani-

mal’s daily life. Therefore, modeling in-network location management to support

imprecision-tolerant queries is desirable for object tracking sensor networks.

A location management scheme supporting imprecision-tolerant queries for

object tracking sensor networks has been studied in [33]. The location information

of an object is stored in a centric storage node and a local storage node. When a

user intends to know the location of an object, the query will be forwarded from
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the querying node to the centric storage node of that object. If the precision level

is satisfactory, the centric storage node will reply to this query. Otherwise, the

query will be forwarded to the local storage node, which has more precise location

information of that object. This scheme has two major drawbacks. First, when the

querying node is very close to the local storage node of the queried object, the

query will still be forwarded to the centric storage node, which may be far from

the querying node. Second, only two precision levels are provided.

5.1 Preliminaries

5.1.1 Background and Motivations

In this chapter, we propose an in-network location management scheme to sup-

port imprecision-tolerant queries for object tracking sensor networks. Two types

of imprecision are considered.Spatial imprecisionmeans that an object could

be locatednear the location answered by the WSN rather thanat the location

answered by the WSN.Temporal imprecisionmeans that the location answered

by the WSN may be recordednear the current time rather thanat the current

time. For both spatial imprecision and temporal imprecision, we argue that an

imprecision-tolerant location management solution should achieve two desirable

goals. First, multiple precision levels should be provided. Second, the query cost

should be proportional to the precision level. For example, for spatial impreci-

sion, the answer provided by node C should be more accurate than that provided

by node A, because node C is farther from the sink (Fig. 5.1(a)). Similarly, for

temporal imprecision, the location answered by node C should be newer than that

answered by node A (Fig. 5.1(b)).

We observe that the tree-based location management schemes proposed in

Chapter 3 could achieve these two goals naturally. For example, Fig. 5.2(a) shows

a tree used for location management. In the tree-based location management

scheme, when an object moves from one sensor to another, the update message

will be forwarded to the lowest common ancestor of those two sensors. Thus,
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Figure 5.1: Examples of spatial imprecision and temporal imprecision.

when an object originally located outside the spatial range of the subtree rooted at

y moves into the range ofA at timet0, nodex (the parent ofy) will be updated.

Thus,x knows that the object is located atA at time t0. When a user receives

such an answer provided byx, the user can only drive that the object is located

at some sensor belonging to a descendant ofy. On the contrary in Fig. 5.2(b), if

the query is forwarded toy, y can provide that the object is located atB at time

t1, and the user can derive that the object is located at some sensor belonging to a

descendant ofz. Therefore, we can see that a user can get more precise location

information when the query is forwarded more deeply down the tree. Further,

if the tree is adeviation-avoidancetree defined in Chapter 3, it ensure thats the

hop count betweeny and the sink will be less than the hop count betweenz and

the sink. It implies that the query cost will be proportional to the precision level.

(Note that when a query is not issued from the sink, it is possible that the querying

node is close to the object rather than the sink, and it needs to forward the query to

the sink first. This may violate this goal. In this case, the multi-sink system pro-

posed in Chapter 4 can be used to solve this problem, because each query is sent

to the nearest sink.) In addition, because of its hierarchical structure, a tree-based

solution can provide multiple precision levels easily.

Therefore, we propose a tree-based location management model to support

imprecision-tolerant queries. To begin with, we define the format of imprecision-

tolerant queries and describe how such queries are processed. The proposed query

model can be applied to any tree structure. We then make some observations
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Figure 5.2: A tree-based location management scheme.

regarding the relationship between query cost and tree structure, and propose a

tree construction algorithm to facilitate the proposed imprecision-tolerant location

management model by reducing the query cost while minimizing the increment

of the update cost. Finally, performance studies are conducted via simulations.

5.1.2 Network Model

The network model used in this chapter is the same with that proposed in Chap-

ter 3. We consider a WSN to be used for object tracking. We adopt a simple

nearest-sensor trackingmodel, in which the sensor that receives the strongest sig-

nal from an object is responsible for tracking the object (this can be achieved by

[7] and we omit the details). Therefore, the sensing field can be modelled by a

Voronoi graph[4], where each sensor’s responsible area is the polygon containing

itself. Two sensors are calledneighborsif their sensing ranges share a common

boundary on the Voronoi graph. Multiple objects may be tracked concurrently by

the network, and we assume that from mobility statistics, it is possible to collect

the frequency that objects move between each pair of neighboring sensors, called

theevent rate.
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5.2 Imprecision-tolerant Location Management Model

We will propose a tree-based, imprecision-tolerant location management model

in this section. Below, we will first introduce the update and query mechanisms.

Since the update and query mechanisms can be applied to any tree structure, we

will then discuss how to reduce the communication cost (i.e., update cost plus

query cost) by adjusting the tree structure. We observe thatuncorrelated sensors

should not be put together under a subtree to reduce the query cost whilecorre-

lated sensorsshould be put together to minimize the increment of update cost,

where the formal definition of correlation of sensors will be introduced later. We

will discuss how to collect query statistics to identify the correlation of sensors.

Finally, based on query statistics, we propose a tree construction algorithmIQT

(Imprecision-tolerant Query Tree) to reduce the query cost while minimize the

increment of the update cost.

5.2.1 Imprecision-tolerant Update and Query Mechanisms

In this subsection, we will present the update and query mechanisms used in the

imprecision-tolerant model. We assume a treeT rooted at the sink has been con-

structed. Each sensorx will maintain an object listOLx that stores the object

information known byx. For each objecto in OLx, three data are recorded:

• o.next: This information is used for forwarding the query to find the object.

If o is tracked byx, theno.next is x itself. Otherwise,o.next will be a child

of x, ando is tracked by a sensor that is a descendant ofo.next.

• o.location: This information is stored the last location information ofo

known byx.

• o.time: This information is stored the newest update time of the information

of o.

Now we describe the update mechanism. The main idea is forwarding update

packets to the lowest common ancestor. When a sensorx receives an update
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packetUpdate(o, a, b, t) (i.e, objecto moves froma to b at timet), x will take the

following actions (For simplicity, we say a node is also a descendants of itself.):

• If b is not a descendant ofx, thenx will remove o from OLx, because

the queries ofo will not be forwarded tox anymore. Then,x will further

forward theUpdate(o, a, b, t) to its parent.

• If b is a descendant ofx but a is not a descendant ofx, thenx will add o’s

information intoOLx. If x = b, theno.next will be set tob. Otherwise,

o.next is set to the child ofx that sendsUpdate(o, a, b, t) to x. In addi-

tion, o.location ando.time are tob andt respectively. Then,x will further

forward theUpdate(o, a, b, t) to its parent.

• If both a andb are descendants ofx (i.e.,x is the lowest common ancestor

of a and b), thenx will modify o’s information inOLx. If x = b, then

o.next will be set tob. Otherwise,o.next is set to the child ofx that sends

Update(o, a, b, t) to x. In addition,o.location ando.time are tob and t

respectively.

Next, we define the query format and the query mechanism. The query used in

this work can be represented asQuery(o, tolerant radius, tolerant interval),

wheretolerant radius is used for supporting spatial imprecision, and

tolerant interval is used for supporting temporal imprecision. Before describing

the query mechanism, we first defineCIRCLE(x, r) as the circle area that is

centered at sensorx and is with radiusr.

The imprecision-tolerant query mechanism operates as follows. When a sen-

sorx (including the sink) receives a queryQuery(o, tolerant radius, tolerant interval),

x will checkOLx and take the following actions:

• If the queried object is tracked byx currently (i.e.,o.next = x), thenx will

reply the query immediately.
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• If the queried object is not tracked byx currently, thenx will check whether

both of the following conditions are true or false. We assume thato.next =

y, wherey 6= x.

1. ∀z ∈ Subtree(y), z is insideCIRCLE(o.location, tolerant radius),

and

2. Current T ime ≥ o.time ≥ Current T ime− tolerant interval,

whereSubtree(y) is the set of sensors that are members of the subtree

rooted aty (note thaty ∈ Subtree(y)), andCurrent T ime denotes cur-

rent time. Based on the check,x will act as follows.

– If both of these two conditions are true,x will reply the query so that

the user will know thato is located ato.location at timeo.time.

– Otherwise, the query will be further forwarded toy until the object is

found or both of the above conditions are true.

We further explain these two conditions. The first condition is for spatial im-

precision. Theorem 7shows that if the first condition is true, the distance between

o.location and the real location ofo will be less than or equal totolerant radius.

Thus,o.location is the acceptable answer for this query. The second condition

is for temporal condition. Intuitively,o.time is acceptable only when its value is

larger than or equal toCurrent T ime−tolerant interval. An example is shown

in Fig. 5.2, where we assume a queryQuery(Dog, tolerant radius, tolerant interval)

is issued. (Note that the dotted circles shown in Fig. 5.2(a) and Fig. 5.2(b) are

CIRCLE(A, tolerant radius) andCIRCLE(B, tolerant radius), respectively.)

In the case of Fig. 5.2(a), we can see thatx cannot reply this query evenCurrent T ime >

t0 > Current T ime − tolerant interval, becauseC is one of y’s descen-

dants andC is not located inCIRCLE(A, tolerant radius). On the contrary,

in the case of Fig. 5.2(b),y can reply the query ifCurrent T ime > t1 >

Current T ime − tolerant interval, becausez and all of its descendants are

located inCIRCLE(B, tolerant radius).
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Theorem 7. For an objecto known by sensorx, assume thato.next = y. If

∀z ∈ Subtree(y), z is insideCIRCLE(o.location, tolerant radius), then the

distance betweeno.location and the real location ofo will be less than or equal

to tolerant radius.

5.2.2 Tree Optimization

Query Statistics

Later, we will show thatuncorrelated sensorsshould not be put together under a

subtree to reduce the query cost whilecorrelated sensorsshould be put together

to minimize the increment of update cost. Thus, we first present how to collect

query statistics to identify the correlation of sensors.

The statistics is done by the sink. The sink will maintain a counterbe queried

for each sensorx. After a queryQuery(o, tolerant radius, tolerant interval)

returns to the sink with the result indicating that the object is located at sensorx,

the sink will increasex.be queried by 1. In addition, thecorrelated sensorsof x

will also be recorded. Based on the query format defined in Sec. 5.2.1, we define

the correlated sensors are those located inCIRCLE(x, min(tolerant radius,

tolerant interval×avg speed)), whereavg speed denotes the average speed of

the queried object.

The query statistics will be used for the tree construction algorithm. Thus,

a question is how to do the query statistics before the tree is constructed. We

propose two approaches. The first approach is calledideal-collection. In this

approach, if a query is issued at timet and the queried object is located at sensor

x at timet, thenx.be queried will be increased by1. This approach cat collect

the most precise data, but this approach is unrealistic, because the exact location

of the object at timet is hard to get precisely.

The second approach is calledtree-collection, in which acollection tree(e.g.,

the DAT tree presented in Chapter 3) will be used initially to do query statistics.

Then, by this query statistics, the tree optimized by considering the imprecision-
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Figure 5.3: The values ofbe queried of sensors collected by (a) ideal-collection
and (b) tree-collection, where the DAT tree is used.

tolerant queries can be constructed. However, because imprecision is unavoidable

in the tree-collection scheme, the result of statistics may be different from that

collected by ideal-collection. Fig. 5.3 shows the values ofbe queried of sensors

collected by ideal-collection and tree-collection respectively, where 1024 sensors

are randomly deployed in a256 × 256 field with uniform distribution and each

sensor is represented as a Voronoi cell. We can see that the results are similar.

Even the result collected by the IQT (Imprecision-tolerant Query Tree) tree that

will be described in the next subsection is also similar to those collected by ideal-

collection and the DAT tree. The reason is that the query is just replied early in

the tree-collection approach and the error is acceptable even although the replied

result may be imprecise. Thus, we can construct a tree initially to do query statis-

tics, and then construct a new tree by considering imprecision-tolerant queries to

reduce the communication cost further.

The only one remaining question is the rule used for determining the cor-

relation between two nodes. Based on the query statistics, we define a func-

tion Confidence(a, b) asN(a, b)/a.be queried, whereN(a, b) is the number of

queries in whicha is queried andb is one of correlated sensors. IfConfidence(a, b)

> min condifence, we say thatb is a correlated sensor ofa.
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Figure 5.4: Some observations.

Imprecision Query Tree Construction Algorithm

We argue that uncorrelated sensors should not be put together under a subtree to

reduce the query cost while correlated sensors should be put together to minimize

the increment of update cost. We use examples to explain the reasons.

First, we focus on the spatial-imprecision. In Fig. 5.4(a), where the dotted

circle denotesCIRCLE(f, tolerant radius), whenx receives a query for object

o ando.location is f , it needs to forward the query tog, because not all members

of Subtree(g) are located inCIRCLE(f, tolerant radius). On the other hand,

in Fig. 5.4(b), we can see that when uncorrelated sensors (i.e.,a, b, c andg) are

removed from the subtree,x can reply this query now. Thus, the query cost is

reduced. However, in Fig. 5.4(b), we can see that when an object moves fromf

to e, update packets have to be sent tox. Thus, when we put correlated sensors

together, the increment of update cost can be minimized.

For the temporal-imprecision, similar results can be derived. Now, we as-

sume the dotted circle shown in Fig. 5.4 isCIRCLE(f, tolerant interval ×
avg speed), whereavg speed denotes the average speed of the queried object.

This means that aftertolerant interval, the object may be located at the outside

of the circle. However, if the object is still located in the subtree ofg, o.time will

not be updated. On the contrary, when we remove the uncorrelated sensor off

(e.g., Fig. 5.4(b) and Fig. 5.4(c)),o.time will be updated so thatx could reply this

query.
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Figure 5.5: (a) The basic idea of constructing a tree. (b) The problem arising when
connecting two subtrees.

Based on the observations mentioned above, we develop a tree construction

algorithm IQT. The basic idea is dividing sensors into subtrees formed by corre-

lated sensors and then connecting those subtrees into a tree as shown Fig. 5.5(a).

However, in Fig. 5.5(b), we can note that whenSubtree2 connects toSubtree1,

the composed members ofSubtree1 are changed. Now when sensorp receives

a query for objecto ando.location is a, the probability thatp cannot reply this

query is high, because some uncorrelated sensors (i.e., those sensors inSubtree2)

are attached toSubtree1.

One way to solve this problem is connecting all subtrees to the sink. Ob-

viously, this solution is not scalable, because when an object moves from one

subtree to another subtree, update messages have to be sent to the sink. Thus, we

propose a backbone-based solution to solve this problem. First, some sensors will

be selected to be backbone nodes. These backbone nodes will form a backbone

tree. On the other hand, other non-backbone nodes will form subtrees according

to the query statistics. Finally, all subtrees are connected to the backbone to form a

single tree. The pseudo-code of the IQT algorithm is shown in Algorithm 3, where

G denotes the modeleed network graph andQS denotes the query statistics. The
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details of each procedure will be further described in the following paragraphs.

Algorithm 3 IQT(G, QS)
1: Backbone-Construction(G, QS)
2: Subtrees-Formation(G, QS)
3: Connecting-Subtrees-To-Backbone(G)

Backbone-Construction(). The first step ofBackbone-Construction() is se-

lecting backbone nodes. Recall that the major task of backbone nodes is to reply

the queries early so that the queries do not need to be forwarded to the subtrees.

Thus, two principles should be followed when selecting backbone nodes:

• The backbone node should be close to the sink. We can see that when the

backbone node is close to the roots of the subtrees, the saved query cost is

limited. On the contrary, when the backbone node is close to the sink, the

backbone node can reply the queries more early.

• The value ofbe queried of a backbone node should be low. The IQT al-

gorithm will attach subtrees to the backbone nodes later and most nodes of

the subtrees are not the correlated node of backbone nodes. Thus, when

the result of a query is a backbone node (recall that the value ofbe queried

of the backbone node will be added by 1 in this case), this query usually

will be forwarded to that backbone node (i.e., no query cost can be saved).

Therefore, this is the reason that the sensor that is queried rarely should be

selected.

Procedure 4 shows the pseudo-code of theBackbone-Constructionprocedure and

the backbone nodes selection procedure is from line 1 to line 13, where two pa-

rameters are used. The first parameterα (0 ≤ α ≤ 1) is used to limit the

values ofbe queried of backbone sensors. We can see that the sensors that are

queried rarely will be selected. (Note that we can also see that at mostbα× |VG|c
backbone nodes will be selected.) On the other hand, the second parameterβ

(0 ≤ β ≤ 1) is used to limit the distance between the backbone node and the
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sink so that the backbone nodes can be the nodes close to the sink. (Note that

MAX HOPCOUNT = max{hop count(x, sink)|∀x ∈ VG})
After selecting the backbone nodes, these backbone nodes form abackbone

subgraph(denoted byBG = (VBG, EBG)), in whichVBG is the set of backbone

nodes and an edge belongs toEBG if both of its two incident nodes are backbone

nodes. Then, the DAT algorithm proposed in Chapter 3 is run onBG. The rea-

son to do so is to connect backbone nodes and minimize the update cost locally.

BecauseBG may be disconnected, it is possible that some backbone nodes do

not have parents after running the DAT algorithm. Obviously, a backbone node

should choose a parent that is also a backbone node. Thus, a backbone nodex

that does not have a parent will choose a backbone nodey as its parent so that

hop count(sink, x) = hop count(sink, y) + hop count(x, y). This ensures that

the tree will be deviation-free. If there are more than one such backbone node,

then the sensory that makeshop count(x, y) minimum will be selected. The rea-

son why minimum is chosen is to reduce the update cost. Procedure 4 shows the

related pseudo-code (from line 14 to line 24).

Subtrees-Formation(). For non-backbone nodes, they should form subtrees

based on the query correlation as we mentioned above. To begin with, we sort non-

backbone nodes bybe queried in increasing order. The reason why increasing

order is used is explained as follows: the best tree for reducing query cost is the

one where each non-backbone node connects to a backbone node alone. In this

case, we can see that for a non-backbone node, no other uncorrelated sensors

will exist. However, this will incur higher update cost. So we prefer to form

correlated sensors into subtrees to minimize the increment of update cost. Thus,

when we examine the non-backbone nodes in increasing order, the sensors with

lower be queried will form subtrees first and the sensors with higherbe queired

have higher opportunity to be alone. (This ensures that the sensors with higher

be queried have no uncorrelated sensors for each query.)

Then, we examine each node inL. If a nodex ∈ L is not examined yet,

then it will form a subgraphST = (VST , EST ) first. Thus, the major task of

76



Procedure 4Backbone-Construction(G, QS)
1: VBG ← {sink}
2: y ← the sensor whosebe queried is thebα × |VG|c-th least one among all

sensors
3: for each nodex ∈ VG except for the sinkdo
4: if (hop count(x, sink) < β ×MAX HOPCOUNT )∧ (x.be queried <

y.be queried) then
5: VBG ← VBG ∪ {x}
6: end if
7: end for
8: EBG ← φ
9: for eache ∈ EG do

10: if both ofe’s two incident nodes belong toVBG then
11: EBG ← EBG ∪ {e}
12: end if
13: end for
14: DAT(BG)
15: for each nodex ∈ VBG except for the sink that does not determine its parent

do
16: cp ← φ
17: for each nodey ∈ VBG do
18: if hop count(sink, x) = hop count(sink, y) + hop count(x, y) then
19: cp ← cp ∪ {y}
20: end if
21: end for
22: choose a nodep such thathop count(p, x) = min{hop count(y, x)|∀y ∈

cp}
23: x’s parent← p
24: end for
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theSubtrees-Formationprocedure is to determine the composed members ofVST

(i.e., x’s correlated sensors). To begin with, we can see that for a subtree, the

node that has the highestbe queried should be considered first (i.e, we should

find its correlated sensors). Thus, we define the leader of a subtree (denoted by

st leader) as the node that has the highestbe queried among the sensors inVST .

Initially, VST only containsx andx is the initial leader. Then,x’s neighbors that

are non-backbone and not examined yet will be considered to be added intoVST .

The set of these nodes is calledcandidatelist denoted bycl. Now we need to

decide whether a nodey in cl is a correlated node of the subtree being examined.

First, y will check whethery.be queried is larger thanst leader.be queried. If

so, theny may become the new leader and it should check whether all of the

members of the subtree are its correlated nodes. If the answer is affirmative,y

will be added intoVST andcl also will be updated by consideringy’s neighbors.

On the other hand, ify.be queried is less than or equal tost leader.be queried,

then the leader will check whethery is its correlated nodes. Again, if the answer

is affirmative,y will be added intoVST andcl also will be updated by considering

y’s neighbors. The same procedure will be performed on all nodes incl until

cl becomes empty. So far,VST is determined. An edge belongs toEST if both

of its two incident nodes are inVST ; thus,EST is also determined. Again, we

run the DAT algorithm to construct a subtree fromST . The pseudo-code of the

Subtrees-Formationprocedure is shown in Procedure 5.

Connecting-Subtrees-To-Backbone(). Because subtrees are formed separately,

some non-backbone nodes do not have parents yet after theSubtrees-Formation

procedure. From the example shown in Fig. 5.5(b), we can know that a subtree

formed by non-backbone nodes should connect to a backbone node. Recall that,

in the Backbone-Constructionprocedure, the backbone nodes that do not have

parents after running the DAT algorithm has a procedure to choose their parents

(from line 15 to line 24). The similar approach can be used to connect subtrees

to the backbone and theConnecting-Subtrees-To-Backboneprocedure is shown

in Procedure 6. We modify the original procedure slightly. Specially, we add a
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Procedure 5Subtrees-Formation(G, QS)
1: Sort non-backbone nodes into a listL by be queried in increasing order
2: for each nodex in L do
3: x.examined ← 0
4: end for
5: for each nodex in L do
6: if x.examined = 0 then
7: VST ← {x}
8: st leader ← x
9: cl ← {y|y ∈ L ∧ y ∈ Neighbor(x) ∧ y.examined = 0}

10: while cl 6= φ do
11: Extract a sensory from cl
12: if y.be queried > st leader.be queried then
13: if ∀z ∈ ST, Confidence(y, z) > min confidence then
14: st leader ← y
15: VST ← VST ∪ {y}
16: cl ← cl ∪ {z|z ∈ L ∧ z ∈ Neighbor(y) ∧ z.examined = 0}
17: y.examined ← 1
18: end if
19: else ify.be queried <= st leader.be queried then
20: if Confidence(st leader, y) > min confidence then
21: VST ← VST ∪ {y}
22: cl ← cl ∪ {z|z ∈ L ∧ z ∈ Neighbor(y) ∧ z.examined = 0}
23: y.examined ← 1
24: end if
25: end if
26: end while
27: EST ← φ
28: for eache ∈ EG do
29: if both ofe’s two incident nodes belong toVST then
30: EST ← EST ∪ {e}
31: end if
32: end for
33: DAT(ST )
34: end if
35: end for
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distance constraint in line 4, where a parameterγ (0 ≤ γ ≤ 1) is used to limit

the distance between the root of the subtree and the root’s parent. We can see that

whenγ is small, the distance between the root and its parent will be large and

larger distance results in low query cost (because the parent can reply the queries

more early) but high update cost.

Procedure 6Connecting-Subtrees-To-Backbone(G)
1: for each non-backbone nodex that does not determine its parentdo
2: cp ← φ
3: for each nodey ∈ VBG do
4: if (hop count(sink, x) = hop count(sink, y) + hop count(x, y)) ∧

(hop count(sink, y) < γ × hop count(sink, x)) then
5: cp ← cp ∪ {y}
6: end if
7: end for
8: choose a nodep such thathop count(p, x) = min{hop count(y, x)|∀y ∈

cp}
9: x’s parent← p

10: end for

Correctness. Finally, we show the correctness of the IQT algorithm. (A tree

is deviation-free if for allx ∈ VG the hop count of the tree path fromx to the sink

is equal to the minimum hop count betweenx and the sink.)

Theorem 8. If G is connected, the tree constructed by algorithm IQT is a con-

nected deviation-avoidance tree rooted at the sink.

5.3 Simulation Results

We have developed a simulator to demonstrate the efficiency of our proposed

imprecision-tolerant location management model. A sensing field with size256×
256 units is simulated, in which1024 sensors are deployed randomly with uni-

form distribution. The sensor located at one of corners of sensing filed is selected

to be the sink.
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Table 5.1: Parameters used in the simulation for imprecision-tolerant location
management model.

Simulation Time 2592000 seconds
MAX TOLERANT RADIUS 30 units
MAX TOLERANT INTERV AL 3600 seconds
Number of objects 128

The event rates of links are generated based on the modified city mobility

model presented in Chapter 3. Two query scenarios are simulated. In the first

scenario, each object is queried evenly. In the second scenario, some objects will

be queried frequently such that there are some query hotspots in the sensing field.

Besides, for each query, the value oftolerant radius is selected randomly from

0 to MAX TOLERANT RADIUS with uniform distribution, and the value of

tolerant interval is selected randomly from0 toMAX TOLERANT INTERV AL

with uniform distribution. The related parameters used in the simulation are

shown in Table 6.1.

To begin with, we consider the scenario in which each object is queried evenly.

In Fig. 5.6, we observe the impact of objects’ speeds. (The settings of para-

meters< α, β, γ, min confidence > used in IQT1, IQT2, IQT3, IQT4 are<

0.1, 0.3, 0.3, 0.9 >, < 0.3, 0.3, 0.3, 0.9 >, < 0.1, 0.5, 0.5, 0.9 >, and

< 0.1, 0.3, 0.3, 0.6 >.) Higher speed means higher update cost. To begin with, a

DAT tree optimized by minimizing the update cost is constructed. We can see that

when our proposed imprecision-tolerant query model is applied to the DAT tree

(i.e., the DAT-I scheme in Fig. 5.6), the saved cost is limited, because most queries

still need to be forwarded to the sensors that are tracking the queried objects. The

proposed IQT tree optimized by reducing the query cost incurred by imprecision-

tolerant queries can be used to solve this problem. Especially, when the query

cost dominates the communication cost (i.e., when objects’ speed is low), the IQT

trees can reduce the communication cost significantly. We can further find that

when the query rate increases from 0.4 to 0.2, the total costs of IQT trees almost

do not increase, because the IQT tree can make the query cost as low as possible.
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(a) Query Rate: 0.4 queries/second
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(b) Query Rate: 0.2 queries/second
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Figure 5.6: The impact of objects’ speeds.

On the other hand, when the query rate increases from 0.4 to 0.2, the total costs of

DAT trees are doubled. However, when the speed is high enough, the DAT trees

still outperform the IQT trees, because the DAT tree is optimized by minimizing

the update cost.

To get further insight into the performance of IQT, four IQT trees with dif-

ferent settings are compared with each other in Fig. 5.6. We can see that when

the query cost dominates the total cost, the value ofα should be low, because

more sensors will be non-backbone nodes that will be considered to reduce the

query cost. In addition, the value ofγ should be low, because this will make

sensors’ parents close to the sink and reduce the length of query paths. Finally,

themin confidence should be high enough such that the queries can indeed be

responded early. On the contrary, when the update cost dominates the total cost,

the values ofα, β andγ should be large, and the value ofmin confidence should

be low such that the constructed tree will be like to the DAT one. Later, we will

investigate more settings under different query scenarios.

We also observe the impact of query rates in Fig. 5.7. We can see that the total

costs even are decreased slightly by using IQT trees optimized by reducing the

query cost. On the other hand, the total costs of DAT trees are increased when the

query rate becomes high.

We find that by optimizing the query cost, the IQT tree also benefits from low
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(a) Speed: 0.4 units/second
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(b) Speed: 0.2 units/second
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Figure 5.7: The impact of query rates.

(a)  Query Rate: 0.4 queries/sec, Speed: 0.5 units/sec
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(b) Query Rate: 0.3 queries/sec, Speed: 0.4 units/sec
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Figure 5.8: Comparison of ratios of update cost to query cost.

query response time. In Fig. 5.8, we consider two cases in which the IQT tree

and the DAT tree have similar performances in terms of total cost. We find that

the query cost of IQT trees can be reduced significantly. This implies low query

response time to which users are sensitive.

Now we consider a scenario in which some objects will be queried frequently

such that there are some query hotspots in the sensing field. Fig. 5.9(a) and

Fig. 5.10(a) show the results of the scenario in which each object is queried evenly.

(Note that the settings of parameters< α, β, γ, min confidence > used in IQT5

and IQT6 are< 0.5, 1.0, 0.3, 0.9 >, and< 0.8, 1.0, 0.3, 0.9 > respectively. Fur-

ther note that in Fig. 5.9, the query rate is set to 0.4 queries/second and in Fig. 5.10,

the objects’ speed is set to 0.4 units/second.) On the other hand, Fig. 5.9(b) and
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(a) Scenario 1 (without query hotspots)
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(b) Scenario 2 (with query hotspots)
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Figure 5.9: The impact of objects’ speeds under two different query scenarios

(a) Scenario 1 (without query hotspots)
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(b) Scenario 2 (with query hotspots)
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Figure 5.10: The impact of query rates under two different query scenarios.

Fig. 5.10(b) show the result of the scenario in which some objects are queried fre-

quently. In the first scenario, one may argue thatγ should be larger than or equal

to β, because some backbone nodes will be useless (i.e., no non-backbone nodes

will connect to them) whenγ is less thanβ. However, in the second scenario, it is

useful to makeγ less thanβ. Sensors in the query hotspots are queried frequently.

Thus, it is better to select them to be non-backbone nodes and select other sen-

sors to be backbone node. Thus, even no non-backbone node connects to some

backbone nodes, sometimes it is still better to keep them as backbone nodes.
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5.4 Summary

By exploiting the nature of imprecision of sensor data, we propose an imprecision-

tolerant location management model for object tracking sensor networks. The

proposed model consists of imprecision-tolerant update and query mechanisms

that can be used to support imprecision-tolerant queries. By exploiting the feature

of the tree-based location management schemes, the proposed model can provide

multiple imprecision levels and ensure that the quest cost will be proportional to

the imprecision level. In addition, we develop a tree construction algorithm to

facilitate the proposed location management model, which can reduce the query

cost while minimize the increment of update cost. Finally, we have demonstrated

the efficiency of the proposed model by simulation.
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Chapter 6

A Link-layer Protocol for
Event-driven WSNs

By simulation, we observe that packet loss may make the location information

incorrect in object tracking sensor networks. Thus, we also propose a link-layer

protocol to relieve the contention and collision problems for event-driven WSNs.

We solve these problems by jointly considering two subissues. One is exploiting

the spatial correlation of data reported by sensors in the event area, and the other

is designing a specific MAC protocol.

6.1 Preliminaries

6.1.1 Background and Motivations

Depending on the reporting behavior, wireless sensor networks (WSNs) can gen-

erally be classified into two categories: time-driven and event-driven. In a time-

driven WSN, sensors report their sensed data periodically to the sink. Such behav-

ior usually exhibits a uniquefunnelingeffect [1], where sensors near the sink may

suffer from higher contention. Some approaches have been developed to solve

this problem [1, 32]. On the contrary, in an event-driven WSN, sensors report

only when they detect events. In such behavior, the traffic near the sink may not

be heavy, but sensors in theevent areamay suffer from higher contention, because

they are likely to detect, and thus intend to report, events simultaneously.
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Figure 6.1: Two examples of event reporting in an event-driven WSN.

Our goal is to solve the contention problem of event reporting in event-driven

WSNs. The proposed approach joints two subissues. One is exploiting the spatial

correlation of data reported by sensors in the event area and the other is designing

a specific MAC protocol. Due to the spatial correlation of sensor data, nearby

sensors typically have similar values. Thus, it may not be necessary for every

sensor to report its sensed data. Exploiting the spatial correlation of sensor data to

reduce redundant reports has been studied in [19, 21, 25, 31, 36]. For example, in

Fig. 6.1(a), the cloud area denotes the event area, and each sensorx is associated

with a correlation region, in which sensors’ readings are highly correlated with

x (the big circles denote the correlation regions of the gray sensors).We can see

that it is sufficient to have sensorsa, b, c, andd to report to cover the event area.

In addition, we can also note that the selection of reporting sensors needs to be

done carefully. For example, in Fig. 6.1(b), the five gray sensors are insufficient

to cover the whole event area.

The second subissue is to design a specific MAC protocol. After reporting

sensors are selected, we need to reduce the contention and collision among these
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reporting packets and to minimize the latency in transmitting these packets. Con-

tention and collision are likely because these sensors may be close to each other. In

addition, because packets in WSNs are typically small, using the RTS/CTS mech-

anism to avoid the hidden terminal problem is not preferred. This also makes the

collision problem more severe. Besides, since these packets are likely to share

common paths when moving toward the sink, we would like to seepipeline effect

such that these packets are separated spatially (e.g., Fig. 6.1(a)), but move sequen-

tially (e.g., Fig. 6.1(b)), along these paths (we will elaborate more on this later).

Thus, designing a specific MAC protocol for event-driven WSNs is required.

In this dissertation, we propose a schedule-based approach to exploit the spa-

tial correlation of sensor data on the link layer. We do not modify the MAC pro-

tocol directly. On the contrary, we develop a scheme for making report decision

and a protocol for transmitting reporting packets on the link layer. By doing so,

any CSMA-based protocol designed for WSNs could be adopted as the underly-

ing MAC protocol; thus, we can simply leave some issues (e.g., power saving)

to the MAC protocol itself. In our approach, a node has two modes:ES (Event-

Source) modeandNES (Non-Event-Source) mode. Initially, each sensor is in the

NES mode. On detecting an event, a sensor will enter the ES mode and adopt

a schedule-based protocol to transmit its packets. (The schedule-based protocol

can be regarded as a TDMA-based protocol, but strictly speaking it is built on

top of a CSMA-based protocol.) The rationale behind this is to avoid contention

and to form the pipeline effect as illustrated in Fig. 6.1(a). This schedule-based

protocol has some characters that makes it different from conventional TDMA-

based protocol. First, the TDMA part is based on very loose time synchronization

and is triggered by the appearance of events. Second, the slot assignment strategy

associated with the TDMA part takes the spatial correlation of sensor data into

consideration and thus allows less strict slot allocation than conventional TDMA

schemes. Interestingly, by intentionally allowing one-hop neighbors to share the

same time slot, the number of slots required per frame is significantly reduced.

Third, by enlarging the slot size on purpose, our scheme enforces packets, after
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leaving the event area, to form a pipeline in such a way that packets flows are like

streams, each of which is separated sufficiently in distance to avoid interference.

In addition, a scheme is devised to exploit the spatial correlation of sensor data.

Specifically, by exploiting TDMA’s features, redundant reports can be further re-

duced with and without the aid of overhearing. On the other hand, because not all

sensors in the NES mode have to transmit packets, sensors in the NES mode will

adopt the original CSMA-based protocol to minimize the delay. Finally, we will

also discuss how to achieve energy efficiency by combining our protocol with the

LPL (Low Power Listening) technique proposed in the B-MAC [20].

6.1.2 Some Observations

In this section, we assume that CC-MAC [31] is adopted in an event-driven WSN

but the RTS/CTS mechanism is removed. In order to motivate our work, we make

some observations from the interference and the spatial correlation aspects.

From the interference aspect, we raise two scenarios to show that the hidden

terminal problem will be very serious in an event-driven WSN. First, as shown

in Fig. 6.2(a), when two sensors two-hops apart detect an event at the same time,

their reports may collide even though their receivers are different. Second, even

for sensors not in the event area, collisions are inevitable as packets move toward

the sink. Fig. 6.2(b) shows an example with a report tree. Without the aid of

RTS/CTS, we can see thatReport 1 could collide withReport 2 at sensorD,

Report 3 andReport 4 could collide at sensorG, andReport 5 could collide

with Report 6 at sensorI. Thus, the interference is serious for sensors in the event

area, as well as those far away from the event area. We can see that designing a

specific MAC protocol for event-driven WSNs in which the RTS/CTS mechanism

is disabled is required.

From the spatial correlation aspect, we argue that using inter-distance between

sensors is insufficient to decide who shall report. First, a simple example is illus-

trated in Fig. 6.3(a), where sensory is near the boundary of sensorx’s correlation
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Figure 6.2: The hidden terminal problem, whereRtran denotes the transmission
range of sensors.

region. With CC-MAC,y has to report no matter whether it overhearsx’s report

or not. We can see that the overlap area ofx’s andy’s correlation regions is about

39% of one correlation region, which is high. A more sophisticated example is

further shown in Fig. 6.3(b). Assuming that sensorsa, b, c, andx have already

reported, we consider two scenarios. First, ify does not overhear any of those

reports (we can see thaty is not in any of the transmission regions ofa, b, c, and

x), theny will report. However,y’s report does not contribute any additional area

to existing reports. Second, even ify can overhearx’s report (this is possible

whenf forwardsx’s report), CC-MAC will enforcey to report, because the dis-

tance betweenx andy is larger thanRcorr. Therefore, a more sophisticated report

reduction scheme is required. In addition, because overhearing is opportunistic

sometimes, this sophisticated scheme should not highly rely on overhearing.

6.2 The Proposed Schedule-based Approach

6.2.1 Overview

We assume that a CSMA-based MAC protocol is adopted as the underlying MAC

protocol. In order to solve the contention problem and the hidden terminal prob-

lem in the event area, a schedule-based (or a TDMA-like) approach is proposed.

90



Figure 6.3: The redundancy problem.

However, for those sensors not in the event area, because not all sensors need to

help forward packets, assigning slots to those sensors that do not intend to transmit

any packet is unnecessary and could increase delay. This means that the TDMA-

like approach may not be suitable for sensors not in the event area. Instead, they

will take a CSMA-based MAC approach. Therefore, our scheme can be regarded

as a hybrid TDMA/CSMA protocol.

Each node has two modes: event-source (ES) mode and non-event-source

(NES) mode. Sensors in the ES mode will adopt a schedule-based approach to

transmit packets. Issues involved in the ES mode include: (i) when to enter the

ES mode, (ii) how to design a good slot assignment strategy, (iii) how to determine

proper slot size, (iv) what will lead to synchronization error and how to conduct

time synchronization, (v) how to exploit the spatial correlation of sensor data, and

(vi) when to leave the ES mode.

On the other hand, sensors in the NES mode will adopt the original CSMA-

based protocol to reduce report latency. An issue involved in this mode is how to

alleviate congestion when multiple events occur simultaneously.
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6.2.2 Operations in the ES Mode

Entering the ES Mode

As we mentioned above, a CSMA-based MAC protocol is adopted as the underly-

ing MAC protocol, but sensors in the ES mode will adopt a TDMA-like protocol.

To implement this TDMA-like protocol, we divide the time into slots at the link

layer. When the network was deployed, a slot assignment algorithm will be run so

that each sensor will be assigned a slot. Slots are numbered from 1 toMAXSLOT,

and the first slot (i.e., slot 1) will be started on-the-fly in an event-driven manner.

Initially, each sensor is in the NES mode. When a sensor detects an event, it

will enter the ES mode by starting slot 1. Then, it will count slots until its slot

arrives. If its slot arrives and it intends to transmit a packet, it will perform the

access mechanisms defined in the underlying CSMA-based MAC protocol (such

as the backoff and CCA mechanisms) as usual to access the channel. If a sensor

cannot send its packet in its current slot, it will wait for its slot in the next cycle

(note that it is also possible that the sensor will suspend its packet and not retry

again).

Slot Assignment Strategy

Conventional TDMA-based protocols will assign each node a slot different from

those of its one-hop and two-hop neighbors. We argue that when the spatial cor-

relation of sensor data is taken into consideration, such a strategy may not be

efficient, because not every sensor needs to report. It is easy to see that if a

node finally decides not to report, then its assigned slot is wasted. In addition,

our TDMA-like protocol is built on top of a CSMA-based protocol. Thus, with

proper backoff, assigning the same slot to neighboring nodes does not necessarily

lead to collision. Even, in case neighboring nodes share the same slot, the backoff

mechanism can be used to determine who should report and the losers may sus-

pend their reports due to the spatial correlation of sensor data when they overhear

the packet sent by the winner. Therefore, we even intentionally assign a slot used
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by a node’s one-hop neighbors to that node, but the node still should be assigned

a slot different from those used by its two-hop neighbors to avoid the hidden ter-

minal problem without the aid of RTS/CTS. Another advantage of our proposed

slot assignment strategy is that the value ofMAXSLOTrequired can be reduced

significantly.

We develop a simple distributed slot assignment algorithm to complement this

slot assignment strategy. Note that the algorithm is run only once when sensors are

first deployed. We make some assumptions. First, the network topology is static

(otherwise, the slot assignment algorithm has to be run after topology change).

Second, each sensor has a unique ID. Third, each sensor can correctly discover all

its one-hop and two-hop neighbors. Finally, the number of two-hop neighbors of

a node is finite.

Each sensor will maintain aslot usage tableto record the slots used by its

one-hop and two-hop neighbors. Each sensor that does not own a slot will select

its slot in a distributed way. Thus, we only describe the behavior of a sensorx.

First,x will send arequest to all of its two-hop neighbors. Any two-hop neighbor

y of x receiving therequest will act as follows.

• If y does not own a slot yet andy.ID < x.ID, theny will reply a grant to

x. Becausey does not own a slot yet, null slot information will be carried

on thegrant.

• Otherwise,y will do nothing.

Oncex receivesgrants from all of its two-hop neighbors,x will select a slot by

the following rule. To begin with,x will check whether there exists a slot such that

this slot has been assigned tox’s one-hop neighbors but has not been assigned to

x’s two-hop neighbors. If such slots exist,x will pick up the most-used one among

those slots. (Recall that we will intentionally assign a slot used by a node’s one-

hop neighbors to that node.) Otherwise,x will select the smallest slot that has

not been used by its two-hop neighbors. (The reason is to minimizeMAXSLOT.)
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After selecting its own slot,x will send agrant with its selected slot to each of its

two-hop neighbors. Then, when another nodez receives such agrant on which

a selected slot is carried from one of its two-hop neighbors,z will modify its slot

usage table accordingly and check whether it has received all grants from all of its

two-hop neighbors.

Finally, when a sensor determines its slot, it will notify the sink so that the

sink can determine the value ofMAXSLOT. Then the sink will announceMAXS-

LOT to all sensors. Note that when no packet loss occurs, the proposed slot as-

signment algorithm guarantees that each node will receivesgrants from all of its

two-hop neighbors. However, when packet loss cannot be avoided, a sensor may

lossgrants and this will result in deadlock. In order to overcome the packet loss

problem, a sensor can actively ask its two-hop neighbors to resend theirgrants

(if allowed) when it waits passively for a long period.

Theorem 9. The proposed slot assignment algorithm ensures that each sensor

will select a slot different from those used by its two-hop neighbors.

Proof. For simplicity, we assume that packet loss will not occur. Because each

sensor has the same behavior, we only consider a sensor, sayx. We assume thatx

hasn two-hop neighbors and the ID ofx is thek-th largest one among thesen+1

sensors, where1 ≤ k ≤ n + 1. We will show thatx can select a slot different

from those used by all of its two-hop neighbors no matter what the value ofk is.

We consider two cases. In the first case, we assumek = 1. In this case, when

x sends arequest to all of its two-hop neighbors, each ofx’s two-hop neighbors

will reply a grant to x, becausex has the largest ID. Thus,x will choose slot 1

(i.e., the smallest slot) to use. It is easy to see that all ofx’s two-hop neighbors

cannot select their slots because they cannot getx’s grant. Then,x will send a

grant with the slot number selected byx to all of its two-hop neighbors; thus all

of x’s two-hop neighbors will not select slot 1 to use. Finally, we can see that the

grant sent byx will make somex’s two-hop neighbors whose IDs are the second

largest among their two-hop neighbors get all requiredgrants and start to select
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their own slots.

Now we consider the second case. In this case, we assume1 < k ≤ n + 1. In

this case, whenx sends arequest to all of its two-hop neighbors, thosex’s two-

hop neighbors whose IDs are smaller thanx.ID will send agrant to x. However,

thosex’s two-hop neighbors whose IDs are larger thanx.ID will send agrant

to x only when they have determined their slots. Thus,x will not use the same

slot with them. (Note that it is possible that two ofx’s two-hop neighbors use the

same slot if these two nodes are not two-hop neighbors with each other.) Afterx

selects its slot,x will send agrant with the slot number selected byx to all of its

two-hop neighbors; thus thosex’s two-hop neighbors whose IDs are smaller than

x.ID will not select the slot the same withx. Finally, we can see that thegrant

sent byx may make some sensors get all requiredgrants and start to select their

own slots.

To verify the efficiency of the proposed slot assignment strategy, a simple

simulation is conducted.4096 sensors are randomly deployed in a256 × 256

field with uniform distribution. As we can see in Fig. 6.4, when the transmission

range of senors increases, the value ofMAXSLOTincreases from45 to 301 when

a node needs to have a slot different from those used by its one-hop and two-hop

neighbors. (Note that our slot assignment algorithm can be easily modified to

support this strategy.) However, the value ofMAXSLOTonly increases from14

to 23 when a sensor only needs to differentiate from its two-hop neighbors. Note

that a lowerMAXSLOTmeans a lower report latency.

Slot Size

In conventional TDMA protocols, the slot size is usually set to the maximum one-

way message delay denoted byd. (Note that in our approach,d should include the

maximum backoff delay, the time to perform CCA, and so on.) Below, we will

show that the hidden terminal problem could be alleviated by prolonging the slot

size. Before that, we define a termflow.
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Figure 6.4: Comparison of slot assignment strategies.

Definition 1. Consider any sensorx that is in the ES mode and located at the

event boundary. Whenx transmits a packet to a neighboring sensor that is in the

NES mode, we say aflow is generated.

In the proposed approach, the slot size is set to`× d, where` is a real number

larger than or equal to 1. Note that` is usually set to be 1 in most TDMA-based

protocols. Fig. 6.5 shows an example of the advantage of` > 1. In Fig. 6.5,E and

F are in the ES mode and their assigned slots arei andi+1 respectively. Suppose

that in some cycleE generates a flow in sloti andF generates a flow in slot

i + 1. WhenC receives the packet sent byE, it will run a CSMA-based protocol

immediately to forward the packet because it is in the NES mode. Fig. 6.5(b)

shows the case of̀ = 1, where the transmission ofF could easily collide with

the transmission ofC at D due to the hidden terminal problem. However, as

Fig. 6.5(c) shows, if we set̀= 2, the transmission ofC will occur within slot i,

thus avoiding the hidden terminal problem.

The purpose of prolonging the slot size is to separate flows in the time domain.

The advantage can be illustrated by Fig. 6.2, where we assume thatReport 1,

Report 3, andReport 5 belong to flow 1, andReport 2, Report 4, andReport 6

belong to flow 2. We can see that the hidden terminal problem in the non-event

area can be avoided when these two flows are separated. Fig. 6.6 shows a more
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Figure 6.5: The impact of slot size beyond event areas.

general example, where the pipeline effect will be formed when the` is large

enough. (As we can see that in Fig. 6.6(a), when` is small, packets will move

sequentially; on the other hand, in Fig. 6.6(b), when` is large, thepipeline effect

will be formed.) However, a larger slot size also incurs longer delay in the event

area. Therefore, determining a proper value of` is an important question. We will

investigate how to choose a proper` by simulation.

Synchronization

Time synchronization should be done in a strict way in conventional TDMA-based

protocols. However, tight clock synchronization is not required in our protocol.

There are two major reasons. First, our TDMA-like protocol is built on top of a

CSMA-based MAC protocol. This means that the backoff scheme and the CCA

(Clear Channel Assessment) scheme can remove most of the collisions caused by

synchronization error. Second, we use longer slot size to separate flows. Thus, we

can tolerate a certain degree of synchronization error. For example, in Fig. 6.7(a),

where` = 3 and two sensors do not synchronize with each other, we can see that
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Figure 6.6: The advantage of separating flows in time.

no matter which slots are used byA andB, there is no collision betweenA and

B.

In our scheme, sensors are assumed to be synchronized by the occurrence of

events, which trigger them to enter the ES mode. This scheme has two problems

that may lead to synchronization error.

• Sensors may not enter ES-Mode simultaneously due to the event propaga-

tion delay.

• When multiple events occur close in time and space, some sensors may de-

tect multiple events. In our scheme, when a sensor in the ES mode detects

another event, we will allow it to continue its slot counting, instead of reset-

ting to slot 1. On the contrary, some sensor may only detect one event and

enter slot 1. This will also lead to synchronization error.

In order to solve these two problems, a simple adjustment scheme is proposed.

We assume that each sensor will count how many slots have passed after it entered

the ES mode. This counter is denoted bys. When a sensorx transmits a packet in

the ES mode, the counterx.s will be carried in the packet. Each ofx’s neighbor

sensors, sayy, that overhears the packet will react as follows. (Note that when
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y receives the packet, it can easily know the packet is transmitted byx in the

((x.s− 1)(modMAXSLOT) + 1)-th slot of a cycle.)

• If y.s > x.s, theny will do nothing.

• If y.s = x.s, theny will fine-tune itself as follows. First,y will estimate the

start time ofx’s slot. If x is slower than itself, then nothing will be done.

Otherwise,y will shorten its current slot to synchronize withx. An example

is shown in Fig. 6.7(b).

• If y.s < x.s, theny will estimate the start time ofx’s slot, adjust its current

slot to((x.s− 1)(modMAXSLOT) + 1), sety.s to x.s, and fine-tune itself.

An example is shown in Fig. 6.7(c).

With our adjustment scheme, when multiple events occur close in time and

space, the sensors that detect the earliest event will dominate the clock in the ES

mode. Although collisions could occur during the adjusting, the backoff and CCA

mechanisms and the design of longer slot size can alleviate the collision problem.

Finally, one should note that we cannot use the slot number assigned to sen-

sors to correct the synchronization error. For example, in Fig. 6.7(d), whenB

overhears the packet transmitted byA, it will switch to slot 10. Later on, when

B overhears the packet transmitted byC, it will switch back to slot 9. Thus, the

counters rather than the slot number should be used in the adjustment scheme.

Exploiting the Spatial Correlation of Sensor Data

So far, we mainly focus on the medium access issue. Next, we discuss how to

exploit the spatial correlation of sensor data. We assume that a correlation radius

Rcorr is given by applications and our goal is to minimize redundant reports un-

der distortion constraints. We propose a report reduction scheme that provides

two advantages. First, by exploiting TDMA’s features, we adopt a probability to

reduce redundant reports without the aid of overhearing. Second, compared to
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CC-MAC, when a sensor overhears a packet, the area of the overlap of correlation

regions will be taken into consideration.

Our report reduction scheme consists of three steps. The first step is executed

when a sensor detects an event. The sensor will use a probability to determine

whether it should report or not (note that if the sensor decides not to report, it still

needs to enter the ES mode). Then, it will enter the second step, during which

it will try to overhear others’ packets before its slot arrives. With overhearing,

some reports can be further discarded in this step. Finally, when the sensor’s slot

arrives, it will enter the third step in which it will transmit one of the packets in its

buffer, if any. The details of this scheme are described as follows.

Step 1: Because overhearing is opportunistic or even impossible sometimes, it is

hard for a sensor to collect enough information to judge whether it should

report or not. Thus, a probability is adopted to help sensors to decide

whether they should report or not. In our scheme, when a sensor detects

an event, it will report this event with a probabilityαS−1, where0 < α ≤ 1

andS is the slot number assigned to that sensor. This means that a sensor

with larger slot number may tend to not report. To motivate this design,

let’s reconsider the example shown in Fig. 6.3(b), where we assume that

sensorsa, b, c, andx have already reported. When our TDMA-like protocol

is applied, this means thaty may have a larger slot number thana, b, c, and

x do. Recall that we have shown thaty’s report is redundant. Based on

this observation, sensors with larger slot number should tend to not report,

because their neighbors may have reported. Note that this step can reduce

redundant reports without the aid of overhearing.

An important issue in the first phase is determining a properα, which needs

to consider many factors, for example, the ratio ofRcorr to Rtran, network

density and so on. It can be observed that when the value ofRcorr/Rtran

becomes larger, the value ofα should be decreased, because the probabil-

ity that a sensor suspends its report by overhearing becomes less. Besides,
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network density will also affect the optimal value ofα. When the network

is dense, the value ofMAXSLOTmay become larger. This will impact the

distribution of slot numbers assigned to sensors and then the value ofα.

(Recall that the probability depends on the slot number assigned to the sen-

sor.) Therefore, we can know that there are many factors needed to be con-

sidered to determine the optimal value ofα. To simplify this problem, we

suggest thatα should be a tunable parameter. Given a distortion constraint,

when the sink receives many redundant reports, it can decrease the value of

α and announce the new value ofα to sensors. (Note that although the sink

cannot know the exact boundary of event area, it can compute the overlap

area of correlation regions to judge the redundancy level.) Besides, when

the distortion is the major concern, the sink can just setα = 1.

Step 2: No matter whether a sensor decides to report or not, the sensor will exe-

cute the procedure in the second step before its own slot arrives. To begin

with, we define thereporter of a packet. The reporter of a packet is the

sensor that first initiates this report packet by detecting an event. (Note that

the sender of a packet may not be the reporter of that packet.)

The procedure in the second step is as follows. A sensorx will try to over-

hear others’ packets. Whenx overhears a packet (whose reporter is denoted

by rreceived), x will check all of the packets in its buffer. We assume the

reporters of the packets inx’s buffer are denotes by{r1, r2, . . . , rk}, where

k is the number of packets inx’s buffer. According to the distance between

rreceived andri, wherei = 1, . . . , k, three cases are considered separately:

• If the distance is smaller thanRcorr, then the packet reported byri will

be removed fromx’s buffer.

• From Fig. 6.3(a), we can observe that when the distance between two

reports is smaller than2 × Rcorr, their correlation regions will over-

lap. Based on this observation, when the distance betweenrreceived
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andri is larger than or equal toRcorr but smaller than2 × Rcorr, x

will determine whether the packet reported byri should be removed

or not with a probabilityINTC(d)/π(Rcorr)
2 , whered denotes the

distance betweenrreceived andri andINTC(d) is the intersection area

of the two circled centered atrreceived andri. INTC(d) can further be

represented by4
∫ Rcorr

d/2

√
(Rcorr)2 − x2dx.

• If the distance is larger than or equal to2×Rcorr, nothing will be done.

Three notes regarding the second step should be addressed. First, if the

packet overheard byx is destinated tox itself, the packet will be inserted

into x’s buffer. Second, the procedure in step 2 will also be run on the sen-

sors that are in the NES mode. More precisely, the procedure in step 2 will

be executed whenever a sensor overhears a packet. Third, compared to CC-

MAC, we argue that our TDMA-based design can increase the opportunity

of overhearing inherently. We can see that before a sensor reports its data, it

has to wait until its own slot arrives. During the waiting period, the sensor

could overhear a packet from other sensors and suspend its report.

Step 3: When the sensor’s slot arrives, it will enter the third step in which it will

transmit one of the packets in its buffer, if any.

Leaving the ES Mode

The final issue is how long a sensor should stay in the ES mode. Basically, a

sensor can return to the NES mode when it has reported or decided not to report the

detected event. However, it is possible that some of its one-hop/two-hop neighbors

need it to help forward their packets. If the sensor returns to the NES mode too

quickly, the possibility of interference and collision may increase when it helps

forward packets. Thus, we suggest that an ES mode sensor can return to the NES

mode when it does not have any packet in its buffer and does not receive/overhear

any packet during a cycle.
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6.2.3 Operations in the NES Mode

Sensors in the NES mode will adopt a CSMA-based protocol to reduce the report

latency. Recall that in the ES mode, we have tried to separate flows to proceed

in a pipeline manner. Thus, collision and congestion should have been avoided.

However, when multiple events occur close in time, flows that belong to different

events may collide with each other. In addition, a late flow may pursue an earlier

flow when congestion occurs. This makes the pipeline effect no longer available.

A way to solve this problem is to use a mechanism similar to that in Z-MAC

[24], that is, to adopt a TDMA-based scheme when a sensor experiences high

contention. However, control packets are required to achieve. In this dissertation,

motivated by [9], we propose an alternative simple scheme calledwait-and-fusion

that does not require any control packet. When a sensor, sayy, in the NES mode

experiences congestion ([24] has proposed some approaches to help a node deter-

mine whether it experiences congestion),y will buffer the received packets and

wait an opportunity for fusion. Specifically, wheny receives a packet whose re-

porter isa, it will check whether there exists a packet in its buffer whose reporter,

sayb, has a distance less thanλ×Rcorr froma and|data(a)−data(b)| < β, where

data(·) denotes the reading of a sensor. If such a packet exists, these two packets

will be fused into one report with a readingf(a, b). Note that functionf and the

values ofλ andβ are application-specific. Such a fusion behavior will continue

for a while until the congestion problem is relieved. With the wait-and-fusion

scheme, we expect that the collision and congestion problems can be alleviated.

6.2.4 Extension for Achieving Energy Efficiency

Due to the power constraint of sensor nodes, energy efficiency is also an important

issue for WSNs. As mentioned above, most CSMA-based MAC protocols can be

adopted as the underlying MAC protocol. Below, we will use B-MAC [20] as

our choice and show how to utilize its LPL (Low Power Listening) technique to

achieve energy efficiency.
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In LPL, a sensor normally stays in the sleep state and wakes up periodically.

When a sensor wakes up, it will turn on its radio for a very short duration and

check for any activity. If a preamble is detected, the sensor will stay awake to

capture the incoming packet. Since nodes are not synchronized and thus wake up

at different times, the preambles of data packets should be longer than the check

interval of sleeping nodes to ensure that sleeping nodes will not miss incoming

packets. More details of LPL can be found in [20].

Below, we make some notes about the combination of our scheme with LPL

technique. First, both the TDMA-like protocol and the periodical wake-up scheme

need timers. These two timers should be run independently. Besides, the maxi-

mum one-way message delay (i.e.,d) should include the preamble length. Fig. 6.8

shows an example, where` = 1. Second, recall that CCA needs to be run before

any transmission. If the CCA outlier algorithm observes that the channel is not

clear, the sensor should switch to the receive mode instead of going back to sleep.

The reason is that our scheme depends on overhearing for inhibiting reporting and

increasing data fusion opportunity.

6.3 Simulation Results

We have developed a simulator to demonstrate the efficiency of our proposed ap-

proach. A sensing field with size256×256 units where4096 sensors are deployed

randomly with uniform distribution is simulated. The sensor with ID 0 is selected

to be the sink. In order to simulate the events arising in the network, a simple

event generation model is proposed. In this model, we use four parameters to

control the generation of events:

• MAX INTERVAL : This parameter defines the maximum time interval be-

tween two events.

• WIDTH andMAX LEVEL : In our model, an event area is represented by

multiple concentric circles. The number of concentric circles is determined
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by MAX LEVEL . The first circle is the one with radiusWIDTH , the second

circle is the one with radius2×WIDTH , and so on.

• PROPAGATIONDELAY: This parameter is used to simulate the event

propagation delay. When an event occurs, if sensors in thei-th annulus

of the event area detect this event atti, then sensors in thei + 1-th annulus

will detect this event atti + PROPAGATIONDELAY.

Now, we describe the procedure of this event generation model. The first event

will be triggered at the beginning of simulation. As we mentioned above, an event

area is represented by multiple concentric circles. Therefore, a point in the send-

ing field will be selected randomly as the center of those circles. Sensors in the

first circle will detect this event first. Then, afterPROPAGATIONDELAY, sen-

sors in the second annulus will also detect this event. This detection procedure

will continue until sensors in theMAX LEVEL -th annulus detect this event. Fi-

nally, when an eventej arises initially, the next event (i.e., eventej+1) will also be

triggered aftert, where0 ≤ t ≤ MAX INTERVAL andt is determined randomly

with uniform distribution.

Three metrics are used to evaluate the performance of medium access schemes.

We countthe number of packets transmitted. Usually, fewer packets means that

sensors can stay in sleep mode longer. Thus, less energy is consumed. We also

measurethe success rate of packet transmissiondefined as the ratio of the number

of packets received by the intended receiver to the number of packets transmit-

ted by the sender. Success rate can be used to evaluate the efficiency of a MAC

protocol. Higher success rate means less collision.Average delayis defined as

the average delay of report packets received by the sink. Besides, two metrics

are used to evaluate the performance of report reduction schemes.Coverageis

defined asAcorr reg union/Aevent area, whereAcorr reg union denotes the area of the

field united by the correlation regions of reporters whose reports are received by

the sink, andAevent area is the area of event area. Higher coverage means that the

sink has more accurate information regarding events. Finally, for an unit area in
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Table 6.1: Parameters used in the simulation for our proposed link-layer protocol.
Buffer Size 10
The length of DATA 30 Bytes
Bit rate 250 kb/s
Simulation Time 1 hour
MAX INTERVAL 10 seconds
WIDTH 10 units
PROPAGATIONDELAY 5 milliseconds
MAX LEVEL 5 (Default)
` 1.5 (Default)

the event area, if it is covered byn sensors’ correlation regions, wheren > 1, then

we define that theredundancyof that unit area is(n− 1)× 100%.

First, we compare our proposed schedule-based approach with a CSMA-based

protocol. Also, two report reduction schemes and two slot assignment schemes

will be applied separately. The detail will be described later. Then, we further

investigate the impact of two parameters used in our proposed approach, that is,α

and`. The related parameters used in the simulation are shown in Table 6.1.

6.3.1 Evaluation of SC-MAC

In this section, we compare our proposed schedule-based approach called SC-

MAC (a MAC protocol with Spatial Correlation consideration) with several schemes.

In the CSMA scheme, a CSMA-based MAC protocol without any spatial correla-

tion consideration is adopted. In the CSMA-SSC (a CSMA-based protocol with

Simple Spatial Correlation consideration) scheme, a CSMA-based MAC protocol

with a simple report reduction scheme is adopted. This report reduction scheme

works as that used in CC-MAC does. More precisely, when a node, sayx, over-

hears a packet whose reporter isy, x will judge whether the distance between

itself andy is smaller than correlation radius or not. If the answer is affirma-

tive, x will suspend its report. Otherwise,x will continue its report. Thus, the

CSMA-SSC scheme can be viewed as the simplified version of CC-MAC. In the

SCMAC-SCC-TSA scheme, the aforementioned report reduction scheme and our
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proposed schedule-based approach will be adopted; however, the Traditional Slot

Assignment strategy (i.e., a node needs to own a slot different from those used by

all of its one-hop and two-hop neighbors) is used. In the SCMAC-TSA scheme,

our proposed schedule-based approach with the traditional slot assignment strat-

egy is adopted. In the SCMAC-SSC, our proposed schedule-based approach with

the simple report reduction scheme is adopted. Finally, one should note that the

RTS/CTS mechanism is not used in all schemes. In addition, the acknowledge-

ment scheme is also disabled in the simulation.

Fig. 6.9 shows the results of the case whereRcorr > Rtran (Rcorr is 15 units,

Rtran is 10 units, andα is set to be 0.5 for the SCMAC-TSA and the SCMAC

schemes). To begin with, we focus on the CSMA and CSMA-SSC schemes. Al-

though they have the best performance in terms of average delay, they have the

worst performance in terms of coverage, especially when the event area becomes

larger. The reason is high contention and collision that make the sink receive

fewer reports than expected. This can be further verified by Fig. 6.9(b). We can

see that the success rate is low when the CSMA and the CSMA-SSC schemes are

adopted. Then, we focus on the SCMAC-SCC-TSA and SCMAC-SCC schemes.

In Fig. 6.9(a), we can see that both of them will transmit many packets in the

network but they do not provide better coverage than the SCMAC scheme does.

The reason can be explained by Fig. 6.9(d). We can see that redundant reports

are too much when these two schemes are applied. This means that the simple re-

port reduction scheme does not perform well enough. In addition, because many

reports have to be sent, these two schemes also do not perform well in terms of

average delay. Finally, we focus on the SCMAC-TSA and SCMAC schemes. In

fact, it is hard to compare these two schemes fairly. Although both of them setα

to be0.5, different slot assignment strategies may result in different performances.

However, it is not hard to see that the SCMAC scheme has better performance in

terms of average delay (note that we can see that the SCMAC scheme transmits

more packets than the SCMAC-TSA scheme does). This demonstrates that the

proposed slot assignment strategy can reduce the report latency significantly (this
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is because the value ofMAXSLOTis reduced). Briefly, our proposed SCMAC

scheme has the best performance. It provides high success rate, high coverage,

low redundancy, reasonable average delay, and reasonable amount of packets.

Fig. 6.10 shows the results of the case whereRcorr < Rtran (Rcorr is 5 units,

Rtran is 10 units, andα is set to be 1.0 for the SCMAC-TSA and the SCMAC

schemes). In this case, we observe that the coverage will be low whenα is set to

be smaller than 1.0. Thus,α is set to be 1.0. We can see that the SCMAC scheme

is still the best one. In addition, we can further note that the advantage of our

proposed slot assignment strategy is revealed thoroughly in this experiment. In

Fig. 6.10(c), we can see that our proposed slot assignment strategy can reduce the

average delay. This also influences the coverage. In Fig. 6.10(d), we can see that

the coverage will become lower when the event area becomes larger. One reason is

buffer overflow (note that we assume that each sensor’s sending buffer is limited

such that for a sensor, if there are too many packets to be sent simultaneously,

some of packets will be discarded), because more report packets have to be sent

when the event area becomes larger. Long delay will worsen the buffer overflow

problem, because packets will be queued in a sensor for a long time. Thus, the

performance of the SCMAC and SCMAC-SSC schemes is better than that of the

SCMAC-SSC-TSA and SCMAC-TSA schemes.

To conclude, the advantages of our proposed SCMAC scheme can be summa-

rized as follows:

• Our proposed medium access scheme can relieve the collision problem

without the aid of RTS/CTS mechanism. This can be verified by high suc-

cess rate.

• Our proposed report reduction scheme can reduce more redundant reports

than the simple report reduction scheme does.

• Our proposed slot assignment strategy can shorten the average delay. This

also relieves the buffer overflow problem.
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6.3.2 Evaluation of Parameters in SC-MAC

In this section, we further explore the impact of two parameters used in our pro-

posed approach, that is,α and`. To begin with,α is inspected. From the previous

subsection, we can draw two conclusions regardingα. First, the optimal value ofα

depends on the slot distribution. For example, when the traditional slot assignment

strategy is adopted, the slot numbers owned by nodes may be large. Thus, higher

α should be used to achieve reasonable coverage. Second, whenRcorr < Rtran, α

should be set to be1 in order to achieve reasonable coverage, becauseα is mainly

used in the situation where redundant reports cannot be removed by overhearing.

In this section, we further investigate the impact of the ratio ofRcorr to Rtran

on the value ofα. Fig. 6.11 shows the results whereN1/N2 denotes thatRcorr is

N1 units andRtran isN2 units. Note that the set of values ofα is{0.01, 0.25, 0.50, 0.75, 1.00}.
From Fig. 6.11(a), we can see that when the ratio ofRcorr to Rtran increases from

1.0 to 2.0, we can use loweralpha to achieve enough coverage. The reason is that

whenRcorr/Rtran becomes larger, the probability that two sensors that are within

each other’s correlation region and cannot overhear each other’s packets directly

becomes larger. Thus, the value ofα should be small in order to reduce redundant

packets. Then, we can note that whenRcorr/Rtran is fixed, largerRtran can lead

to better coverage, because more sensors can overhear the reports. This also im-

plies that a smaller value ofα should be used when the network density is large.

However, from Fig. 6.11(b), we observe that when theRtran becomes larger, the

redundancy is high even a small value ofα is used. Thus, we suggest thatRtran

should not be too large and we can increase the value ofα to achieve required

coverage.

Next,` is investigated. In Fig. 6.12(a), we can see that prolonging the slot size

can increase the success rate, because the hidden terminal problem is alleviated.

Although the increment is small, the improvement will be large when the amount

of packets transmitted becomes large. In addition, in Fig. 6.12(b), it can be seen

that prolonging the slot size can also enhance coverage, because more packets
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are transmitted to the sink successfully. However, in Fig. 6.12, we can see that

prolonging the slot size will be penalized by long delay. Therefore, determining a

proper value of̀ may depend on application requirement.

When the network load is high, prolonging the slot size may not be a good

idea, because long delay will worsen the buffer overflow problem. As we can see

in Fig. 6.13, although the success rate becomes higher when` becomes larger,

the coverage becomes lower, because many packets are dropped due to buffer

overflow. Thus, the network load also should be taken into consideration when

we need to decide the proper value of`.

6.4 Summary

We have shown how to exploit the spatial correlation of sensor data on the link

layer for event-driven WSNs. A hybrid TDMA/CSMA protocol is proposed. The

protocol has three features that makes it very efficient. First, the TDMA part is

triggered only when sensors detect an event. By doing so, the protocol enjoys

the benefits of collision-free transmission of TDMA and low latency transmission

of CSMA. Second, the slot assignment strategy associated with the TDMA part

takes the spatial correlation of sensor data into consideration. By intentionally

allowing one-hop neighbors to share the same time slot, the number of slots re-

quired per frame is significantly reduced. Thus, the transmission latency is also

reduced. Third, by enlarging the slot size on purpose, an interesting effect of

pipeline transmission is formed, and thus the interference problem in the non-

event area is alleviated. In addition, redundant reports are significantly reduced

by our proposed report reduction scheme. We also discuss how to combine our

scheme with LPL to achieve energy efficiency. Simulation results have demon-

strated the efficiency of our scheme. We believe that our approach can be built on

top of most CSMA-based MAC protocols.
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Figure 6.7: The synchronization problem.

Figure 6.8: Combining our scheme with LPL.
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Figure 6.9: Comparison of different schemes, whereRcorr > Rtran.
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Figure 6.10: Comparison of different schemes, whereRcorr < Rtran.
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Figure 6.11: The impact ofα under different ratios ofRcorr to Rtran.
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Figure 6.12: The impact of̀, whereRcorr is 15 units,Rtran is 10 units, and the
value ofα is 0.3.

Figure 6.13: The impact of̀, whereRcorr is 5 units, Rtran is 10 units, and the
value ofα is 1.0.
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Chapter 7

Conclusions and Future Directions

Object tracking is an important application of WSNs and location management

is one of the key steps involved in object tracking. In this dissertation, we pro-

pose several tree-based location management schemes to reduce the communica-

tion cost. We also address the contention and collision problems for event-driven

WSNs (e.g., object tracking sensor networks). The significant results with future

works are summarized as follows.

In Chapter 3, we have developed several efficient ways to construct a logical

object tracking tree for a single-sink sensor network. We have shown how to or-

ganize sensor nodes as a logical tree so as to facilitate in-network data processing

and to reduce the total communication cost incurred by object tracking. For the

location update part, our work can be viewed as the extension of the work in [14],

and we enhance the work by exploiting the physical structure of the sensor net-

work and the concept of deviation avoidance. In addition, we also consider the

query operation and formulate the query cost of an object tracking tree given the

query rates of sensors. In particular, our approach tries to strike a balance be-

tween the update cost and query cost. Performance analyses are presented with

respect to factors such as moving rates and query rates. Simulation results show

that by exploiting the deviation-avoidance trees, algorithms DAT and Z-DAT are

able to reduce the update cost. By adjusting the deviation-avoidance trees, algo-

rithm QCR is able to significantly reduce the total cost when the aggregate query
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rates is high, thus leading to efficient object tracking solutions.

Chapter 4 further explores the possibility of having multiple sinks in the net-

work. One advantage of having multiple sinks is to reduce the response time of

queries. In addition, using multiple sinks can also relieve the traffic congestion

problem associated with a single-sink system. We extend the single-sink loca-

tion management scheme proposed in Chapter 3 by constructing multiple trees

to support multi-sink WSNs. The corresponding update cost is formulated for-

mally. Based on the formulation, we have presented two distributed algorithms to

construct multiple trees. We have verifies the benefits of a multi-sink WSN from

different aspects, including the total (update plus query) cost, the number of sinks,

query response time, query success rate, and load balance factor.

By exploiting the inherent property of imprecision of sensor data, Chapter 5

presents an imprecision-tolerant location management model for object tracking

sensor networks. The proposed model consists of imprecision-tolerant update and

query mechanisms that can be used to support imprecision-tolerant queries. By

exploiting the feature of the tree-based location management schemes, the pro-

posed model can provide multiple imprecision levels and ensure that the quest cost

will be proportional to the imprecision level. In addition, we develop a tree con-

struction algorithm to facilitate the proposed location management model, which

can reduce the query cost while minimize the increment of update cost.

By simulation, we observe that packet loss may make the location informa-

tion incorrect in object tracking sensor networks. Thus, a protocol is proposed

in Chapter 6 to support the location management schemes from the link layer.

We have shown how to exploit the spatial correlation of sensor data on the link

layer for event-driven WSNs. A hybrid TDMA/CSMA protocol is proposed. The

protocol has three features that makes it very efficient. First, the TDMA part is

triggered only when sensors detect an event. By doing so, the protocol enjoys the

benefits of collision-free transmission of TDMA and low latency transmission of

CSMA. Second, the slot assignment strategy associated with the TDMA part takes

the spatial correlation of sensor data into consideration. By intentionally allow-
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ing one-hop neighbors to share the same time slot, the number of slots required

per frame is significantly reduced. Thus, the transmission latency is also reduced.

Third, by enlarging the slot size on purpose, an interesting effect of pipeline trans-

mission is formed, and thus the interference problem in the non-event area is al-

leviated. In addition, redundant reports are significantly reduced by our proposed

report reduction scheme. We also discuss how to combine our scheme with LPL

to achieve energy efficiency. Simulation results have demonstrated the efficiency

of our scheme.

The future work includes two aspects. First, due to the fault-prone property

of sensor nodes, developing a fault-tolerant mechanism for the tree-based loca-

tion management is required. We will investigate a virtual-tree system, in which

an implicit tree is still used. However, because no explicit tree exists, the fault-

tolerant can be done easily. Second, we have proposed a link-layer protocol to

support event-driven sensor networks in this dissertation. In the future, we will

further develop a link-layer protocol to support hybrid time-driven/event-driven

sensor networks.
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